BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 23685915)

  • 21. A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies.
    Christoffersson J; Bergström G; Schwanke K; Kempf H; Zweigerdt R; Mandenius CF
    Methods Mol Biol; 2016; 1502():159-68. PubMed ID: 27052611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells.
    Wertheim L; Shapira A; Amir RJ; Dvir T
    Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors.
    Shafa M; Sjonnesen K; Yamashita A; Liu S; Michalak M; Kallos MS; Rancourt DE
    J Tissue Eng Regen Med; 2012 Jun; 6(6):462-72. PubMed ID: 21761573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture.
    Wagner I; Materne EM; Brincker S; Süssbier U; Frädrich C; Busek M; Sonntag F; Sakharov DA; Trushkin EV; Tonevitsky AG; Lauster R; Marx U
    Lab Chip; 2013 Sep; 13(18):3538-47. PubMed ID: 23648632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organ-on-a-chip technology: a novel approach to investigate cardiovascular diseases.
    Paloschi V; Sabater-Lleal M; Middelkamp H; Vivas A; Johansson S; van der Meer A; Tenje M; Maegdefessel L
    Cardiovasc Res; 2021 Dec; 117(14):2742-2754. PubMed ID: 33729461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The three-dimensional cultivation of the carcinoma cell line HepG2 in a perfused chip system leads to a more differentiated phenotype of the cells compared to monolayer culture.
    Altmann B; Giselbrecht S; Weibezahn KF; Welle A; Gottwald E
    Biomed Mater; 2008 Sep; 3(3):034120. PubMed ID: 18765895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments.
    Zhang C; Zhao Z; Abdul Rahim NA; van Noort D; Yu H
    Lab Chip; 2009 Nov; 9(22):3185-92. PubMed ID: 19865724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. User-Friendly and Parallelized Generation of Human Induced Pluripotent Stem Cell-Derived Microtissues in a Centrifugal Heart-on-a-Chip.
    Schneider O; Zeifang L; Fuchs S; Sailer C; Loskill P
    Tissue Eng Part A; 2019 May; 25(9-10):786-798. PubMed ID: 30968738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Workshop meeting report Organs-on-Chips: human disease models.
    van de Stolpe A; den Toonder J
    Lab Chip; 2013 Sep; 13(18):3449-70. PubMed ID: 23645172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organs on Chips 2013.
    Beebe DJ; Ingber DE; den Toonder J
    Lab Chip; 2013 Sep; 13(18):3447-8. PubMed ID: 23918086
    [No Abstract]   [Full Text] [Related]  

  • 32. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip.
    Yoon No D; Lee KH; Lee J; Lee SH
    Lab Chip; 2015 Oct; 15(19):3822-37. PubMed ID: 26279012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies.
    Emmert MY; Wolint P; Wickboldt N; Gemayel G; Weber B; Brokopp CE; Boni A; Falk V; Bosman A; Jaconi ME; Hoerstrup SP
    Biomaterials; 2013 Sep; 34(27):6339-54. PubMed ID: 23727259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pumpless steady-flow microfluidic chip for cell culture.
    Marimuthu M; Kim S
    Anal Biochem; 2013 Jun; 437(2):161-3. PubMed ID: 23453976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities.
    Maoz BM; Herland A; Henry OYF; Leineweber WD; Yadid M; Doyle J; Mannix R; Kujala VJ; FitzGerald EA; Parker KK; Ingber DE
    Lab Chip; 2017 Jun; 17(13):2294-2302. PubMed ID: 28608907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology.
    Cochrane A; Albers HJ; Passier R; Mummery CL; van den Berg A; Orlova VV; van der Meer AD
    Adv Drug Deliv Rev; 2019 Feb; 140():68-77. PubMed ID: 29944904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics.
    Terrell JA; Jones CG; Kabandana GKM; Chen C
    J Mater Chem B; 2020 Aug; 8(31):6667-6685. PubMed ID: 32567628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering a perfusable 3D human liver platform from iPS cells.
    Schepers A; Li C; Chhabra A; Seney BT; Bhatia S
    Lab Chip; 2016 Jul; 16(14):2644-53. PubMed ID: 27296616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.