These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23686151)

  • 1. Contribution of visual velocity and displacement cues to human balancing of support surface tilt.
    Assländer L; Hettich G; Gollhofer A; Mergner T
    Exp Brain Res; 2013 Jul; 228(3):297-304. PubMed ID: 23686151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual contribution to human standing balance during support surface tilts.
    Assländer L; Hettich G; Mergner T
    Hum Mov Sci; 2015 Jun; 41():147-64. PubMed ID: 25816794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human stance control beyond steady state response and inverted pendulum simplification.
    Schweigart G; Mergner T
    Exp Brain Res; 2008 Mar; 185(4):635-53. PubMed ID: 18030458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pronounced overestimation of support surface tilt during stance.
    Maurer C; Schweigart G; Mergner T
    Exp Brain Res; 2006 Jan; 168(1-2):41-50. PubMed ID: 16132967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of sensorimotor integration to spinal stabilization in humans.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2009 Jul; 102(1):496-512. PubMed ID: 19403751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential integration of visual and kinaesthetic signals to upright stance.
    Isableu B; Fourre B; Vuillerme N; Giraudet G; Amorim MA
    Exp Brain Res; 2011 Jul; 212(1):33-46. PubMed ID: 21533556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues.
    Assländer L; Peterka RJ
    J Neurophysiol; 2016 Aug; 116(2):272-85. PubMed ID: 27075544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stance width on frontal plane postural dynamics and coordination in human balance control.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2010 Aug; 104(2):1103-18. PubMed ID: 20427616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The integration of multiple proprioceptive information: effect of ankle tendon vibration on postural responses to platform tilt.
    Hatzitaki V; Pavlou M; Bronstein AM
    Exp Brain Res; 2004 Feb; 154(3):345-54. PubMed ID: 14586531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear postural control in response to visual translation.
    Ravaioli E; Oie KS; Kiemel T; Chiari L; Jeka JJ
    Exp Brain Res; 2005 Jan; 160(4):450-9. PubMed ID: 15480604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of bilateral vestibular loss on spinal stabilization in humans.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2010 Apr; 103(4):1978-87. PubMed ID: 20147413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support.
    Wang Y; Kenyon RV; Keshner EA
    Exp Brain Res; 2010 Apr; 201(4):663-72. PubMed ID: 19924408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proprioceptive contribution of postural control as assessed from very slow oscillations of the support in healthy humans.
    Vaugoyeau M; Viel S; Amblard B; Azulay JP; Assaiante C
    Gait Posture; 2008 Feb; 27(2):294-302. PubMed ID: 17509884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of vision to postural behaviors during continuous support-surface translations.
    Joseph Jilk D; Safavynia SA; Ting LH
    Exp Brain Res; 2014 Jan; 232(1):169-80. PubMed ID: 24132526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subjective somatosensory vertical during dynamic tilt is dependent on task, inertial condition, and multisensory concordance.
    Wright WG; Glasauer S
    Exp Brain Res; 2006 Jul; 172(3):310-21. PubMed ID: 16463151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of postural patterns as a function of vision and translation frequency.
    Buchanan JJ; Horak FB
    J Neurophysiol; 1999 May; 81(5):2325-39. PubMed ID: 10322069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions in a postural task: do the recruitment and suppression of degrees of freedom stabilize posture?
    Buchanan JJ; Horak FB
    Exp Brain Res; 2001 Aug; 139(4):482-94. PubMed ID: 11534873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential sensitivity to static visual cues in the control of postural equilibrium in man.
    Crémieux J; Mesure S
    Percept Mot Skills; 1994 Feb; 78(1):67-74. PubMed ID: 8177690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.