BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23686212)

  • 21. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a finite element human head model partially validated with thirty five experimental cases.
    Mao H; Zhang L; Jiang B; Genthikatti VV; Jin X; Zhu F; Makwana R; Gill A; Jandir G; Singh A; Yang KH
    J Biomech Eng; 2013 Nov; 135(11):111002. PubMed ID: 24065136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear.
    Tadepalli SC; Erdemir A; Cavanagh PR
    J Biomech; 2011 Aug; 44(12):2337-43. PubMed ID: 21742332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations.
    Hu J; Klinich KD; Miller CS; Rupp JD; Nazmi G; Pearlman MD; Schneider LW
    Ann Biomed Eng; 2011 Mar; 39(3):1074-83. PubMed ID: 21120694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A real time hyperelastic tissue model.
    Zhong H; Peters T
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):185-93. PubMed ID: 17558647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesh development for a finite element model of the carotid artery.
    Gayzik FS; Tan JC; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():187-92. PubMed ID: 16817606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical characterization of brain tissue in tension at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2014 May; 33():43-54. PubMed ID: 23127641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.
    Hu J; Klinich KD; Miller CS; Nazmi G; Pearlman MD; Schneider LW; Rupp JD
    J Biomech; 2009 Nov; 42(15):2528-34. PubMed ID: 19665131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive skeletal muscle response to impact loading: experimental testing and inverse modelling.
    Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Nov; 27():214-25. PubMed ID: 23707599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of optimization methodology and specimen-specific finite element models for investigating material properties of rat skull.
    Guan F; Han X; Mao H; Wagner C; Yeni YN; Yang KH
    Ann Biomed Eng; 2011 Jan; 39(1):85-95. PubMed ID: 20652748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of rib structural responses under dynamic loadings using different material properties: A finite element analysis.
    Shen J; Roth S
    Med Eng Phys; 2022 Jul; 105():103820. PubMed ID: 35781384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
    Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D
    Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a parametric finite element human femur model.
    Klein KF; Hu J; Reed MP; Schneider LW; Rupp JD
    Traffic Inj Prev; 2017 May; 18(4):420-426. PubMed ID: 28095035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.