BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23686763)

  • 1. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi.
    Nagpure A; Choudhary B; Gupta RK
    J Basic Microbiol; 2014 May; 54(5):397-407. PubMed ID: 23686763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal cell-wall lytic enzymes, antifungal metabolite(s) production, and characterization from Streptomyces exfoliatus MT9 for controlling fruit-rotting fungi.
    Choudhary B; Nagpure A; Gupta RK
    J Basic Microbiol; 2014 Dec; 54(12):1295-309. PubMed ID: 25143015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2.
    Shekhar N; Bhattacharya D; Kumar D; Gupta RK
    Can J Microbiol; 2006 Sep; 52(9):805-8. PubMed ID: 17110971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal potential of actinomycete isolate Streptomyces exfoliates MT9 against wood-rotting fungi.
    Sharma P; Choudhary B; Nagpure A; Gupta RK
    J Environ Biol; 2016 Nov; 37(6):1231-37. PubMed ID: 29257362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi.
    Prapagdee B; Kuekulvong C; Mongkolsuk S
    Int J Biol Sci; 2008 Sep; 4(5):330-7. PubMed ID: 18825279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological control of toxigenic citrus and papaya-rotting fungi by Streptomyces violascens MT7 and its extracellular metabolites.
    Choudhary B; Nagpure A; Gupta RK
    J Basic Microbiol; 2015 Dec; 55(12):1343-56. PubMed ID: 26214840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of an extracellular chitinase from antagonistic Streptomyces violaceusniger.
    Nagpure A; Gupta RK
    J Basic Microbiol; 2013 May; 53(5):429-39. PubMed ID: 22915152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition of toxigenic fungi by a proteinaceous compound from Streptomyces sp. C/33-6.
    Fulgueira CL; Amigot SL; Magni C
    Curr Microbiol; 2004 Feb; 48(2):135-9. PubMed ID: 15057482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process.
    Getha K; Vikineswary S
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):303-10. PubMed ID: 12032802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-fungal potentials of extracellular metabolites of Western Ghats isolated Streptomyces sp. NII 1006 against moulds and yeasts.
    Jayamurthy H; Valappil Sajna K; Dastagar SG; Pandey A
    Indian J Exp Biol; 2014 Nov; 52(11):1138-46. PubMed ID: 25434110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and beta-1,3-glucanase production.
    Aktuganov G; Melentjev A; Galimzianova N; Khalikova E; Korpela T; Susi P
    Can J Microbiol; 2008 Jul; 54(7):577-87. PubMed ID: 18641704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification, characterization and thermodynamics of antifungal protease from Streptomyces sp. A6.
    Singh AK; Chhatpar HS
    J Basic Microbiol; 2011 Aug; 51(4):424-32. PubMed ID: 21656799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkaline protease inhibitor: a novel class of antifungal proteins against phytopathogenic fungi.
    Vernekar JV; Ghatge MS; Deshpande VV
    Biochem Biophys Res Commun; 1999 Sep; 262(3):702-7. PubMed ID: 10471389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization and optimization of antifungal activity of an actinomycete of soil origin.
    Augustine SK; Bhavsar SP; Baserisalehi M; Kapadnis BP
    Indian J Exp Biol; 2004 Sep; 42(9):928-32. PubMed ID: 15462189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production.
    Qualhato TF; Lopes FA; Steindorff AS; Brandão RS; Jesuino RS; Ulhoa CJ
    Biotechnol Lett; 2013 Sep; 35(9):1461-8. PubMed ID: 23690037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The study of mycolytic properties of aerobic spore-forming bacteria producing extracellular chitinases].
    Aktuganov GE; Melent'ev AI; Galimzianova NF; Shirokov AV
    Mikrobiologiia; 2008; 77(6):788-97. PubMed ID: 19137718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new chitinase-producer strain Streptomyces glauciniger WICC-A03: isolation and identification as a biocontrol agent for plants phytopathogenic fungi.
    Awad HM; El-Enshasy HA; Hanapi SZ; Hamed ER; Rosidi B
    Nat Prod Res; 2014; 28(24):2273-7. PubMed ID: 25078877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw.
    Tsujiyama S; Ueno H
    J Sci Food Agric; 2013 Aug; 93(11):2841-8. PubMed ID: 23450755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound.
    Magnusson J; Schnürer J
    Appl Environ Microbiol; 2001 Jan; 67(1):1-5. PubMed ID: 11133421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1,4-β-glucosidase.
    Větrovský T; Baldrian P; Gabriel J
    Appl Biochem Biotechnol; 2013 Jan; 169(1):100-9. PubMed ID: 23149715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.