These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23686949)

  • 1. Transport logistics in pollen tubes.
    Chebli Y; Kroeger J; Geitmann A
    Mol Plant; 2013 Jul; 6(4):1037-52. PubMed ID: 23686949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organelle trafficking, the cytoskeleton, and pollen tube growth.
    Cai G; Parrotta L; Cresti M
    J Integr Plant Biol; 2015 Jan; 57(1):63-78. PubMed ID: 25263392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins.
    Cheung AY; Duan QH; Costa SS; de Graaf BH; Di Stilio VS; Feijo J; Wu HM
    Mol Plant; 2008 Jul; 1(4):686-702. PubMed ID: 19825573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pollen tube clear zone: clues to the mechanism of polarized growth.
    Hepler PK; Winship LJ
    J Integr Plant Biol; 2015 Jan; 57(1):79-92. PubMed ID: 25431342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional compartmentalization in pollen tubes.
    Cheung AY; Wu HM
    J Exp Bot; 2007; 58(1):75-82. PubMed ID: 16980593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organelle motility in the pollen tube: a tale of 20 years.
    Cai G; Cresti M
    J Exp Bot; 2009; 60(2):495-508. PubMed ID: 19112169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement.
    Romagnoli S; Cai G; Faleri C; Yokota E; Shimmen T; Cresti M
    Plant Cell Physiol; 2007 Feb; 48(2):345-61. PubMed ID: 17204488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential organelle movement on the actin cytoskeleton in lily pollen tubes.
    Lovy-Wheeler A; Cárdenas L; Kunkel JG; Hepler PK
    Cell Motil Cytoskeleton; 2007 Mar; 64(3):217-32. PubMed ID: 17245769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes.
    Idilli AI; Morandini P; Onelli E; Rodighiero S; Caccianiga M; Moscatelli A
    Mol Plant; 2013 Jul; 6(4):1109-30. PubMed ID: 23770840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple.
    Meng D; Gu Z; Yuan H; Wang A; Li W; Yang Q; Zhu Y; Li T
    Plant Cell Physiol; 2014 May; 55(5):977-89. PubMed ID: 24503865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes.
    Samaj J; Müller J; Beck M; Böhm N; Menzel D
    Trends Plant Sci; 2006 Dec; 11(12):594-600. PubMed ID: 17092761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fountain streaming contributes to fast tip-growth through regulating the gradients of turgor pressure and concentration in pollen tubes.
    Liu S; Liu H; Feng S; Lin M; Xu F; Lu TJ
    Soft Matter; 2017 Apr; 13(16):2919-2927. PubMed ID: 28352884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of transglutaminase in pear pollen tubes in relation to cytoskeleton and membrane dynamics.
    Del Duca S; Faleri C; Iorio RA; Cresti M; Serafini-Fracassini D; Cai G
    Plant Physiol; 2013 Apr; 161(4):1706-21. PubMed ID: 23396835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes.
    Ketelaar T; Galway ME; Mulder BM; Emons AM
    J Microsc; 2008 Aug; 231(2):265-73. PubMed ID: 18778424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways.
    Moscatelli A; Idilli AI
    J Integr Plant Biol; 2009 Aug; 51(8):727-39. PubMed ID: 19686370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ABP41 is involved in the pollen tube development via fragmenting actin filaments.
    Wang T; Xiang Y; Hou J; Ren HY
    Mol Plant; 2008 Nov; 1(6):1048-55. PubMed ID: 19825602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes.
    Kroeger JH; Daher FB; Grant M; Geitmann A
    Biophys J; 2009 Oct; 97(7):1822-31. PubMed ID: 19804712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The essential role of anionic transport in plant cells: the pollen tube as a case study.
    Tavares B; Domingos P; Dias PN; Feijó JA; Bicho A
    J Exp Bot; 2011 Apr; 62(7):2273-98. PubMed ID: 21511914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic flow in the cytoplasm of plant cells.
    Esseling-Ozdoba A; Houtman D; VAN Lammeren AA; Eiser E; Emons AM
    J Microsc; 2008 Aug; 231(2):274-83. PubMed ID: 18778425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic proteins from tobacco pollen tubes that crosslink microtubules and actin filaments in vitro are metabolic enzymes.
    Romagnoli S; Faleri C; Bini L; Baskin TI; Cresti M
    Cytoskeleton (Hoboken); 2010 Dec; 67(12):745-54. PubMed ID: 20862688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.