BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23687357)

  • 1. The Kielin/chordin-like protein checkpoint constitutes a system of checks and balances in CKD.
    Zeisberg M; Kalluri R
    J Am Soc Nephrol; 2013 May; 24(6):863-5. PubMed ID: 23687357
    [No Abstract]   [Full Text] [Related]  

  • 2. Kielin/chordin-like protein attenuates both acute and chronic renal injury.
    Soofi A; Zhang P; Dressler GR
    J Am Soc Nephrol; 2013 May; 24(6):897-905. PubMed ID: 23539757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Renal tubular sodium and water excretion in the recovery stage of acute tubular necrosis (author's transl)].
    Mizumura Y; Iida H; Takata M; Sugimoto T; Takazakura E
    Nihon Jinzo Gakkai Shi; 1981 Nov; 23(11):1415-9. PubMed ID: 7334721
    [No Abstract]   [Full Text] [Related]  

  • 4. Renal ammoniagenesis in kidney slices from rats undergoing glycerol-induced acute tubular necrosis.
    Preuss HG; Sundquist R; Podlasek SJ
    Experientia; 1982 Jun; 38(6):678. PubMed ID: 6125406
    [No Abstract]   [Full Text] [Related]  

  • 5. Urinary beta 2-microglobulin and serum bilirubin concentrations in hepatorenal syndrome and acute tubular necrosis.
    Arroyo V; Rimola A; Felisart J; Cabrera J
    Hepatology; 1986; 6(1):159-60. PubMed ID: 3943786
    [No Abstract]   [Full Text] [Related]  

  • 6. Plasma protein binding of phenylbutazone during recovery from acute renal failure.
    Mussche MM; Belpaire FM; Bogaert MG
    Eur J Clin Pharmacol; 1975 Oct; 9(1):69-71. PubMed ID: 1233255
    [No Abstract]   [Full Text] [Related]  

  • 7. Renal Sympathetic Nerve-Derived Signaling in Acute and Chronic kidney Diseases.
    Noh MR; Jang HS; Kim J; Padanilam BJ
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute kidney injury: defining prerenal azotemia in clinical practice and research.
    Parikh CR; Coca SG
    Nat Rev Nephrol; 2010 Nov; 6(11):641-2. PubMed ID: 20981121
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View.
    Guzzi F; Cirillo L; Roperto RM; Romagnani P; Lazzeri E
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31590461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomarkers of Acute and Chronic Kidney Disease.
    Zhang WR; Parikh CR
    Annu Rev Physiol; 2019 Feb; 81():309-333. PubMed ID: 30742783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of N-1-methylnicotinamide clearance with 5 other markers of renal function in models of acute and chronic renal failure.
    Nasseri K; Daley-Yates PT
    Toxicol Lett; 1990 Sep; 53(1-2):243-5. PubMed ID: 2145662
    [No Abstract]   [Full Text] [Related]  

  • 12. Ferroptosis and Necroptosis in the Kidney.
    Belavgeni A; Meyer C; Stumpf J; Hugo C; Linkermann A
    Cell Chem Biol; 2020 Apr; 27(4):448-462. PubMed ID: 32302582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of epidermal growth factor receptor in acute and chronic kidney injury.
    Tang J; Liu N; Zhuang S
    Kidney Int; 2013 May; 83(5):804-10. PubMed ID: 23325080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme protein-ischemic interactions at the vascular, intraluminal, and renal tubular cell levels: implications for therapy of myoglobin-induced renal injury.
    Zager RA
    Ren Fail; 1992; 14(3):341-4. PubMed ID: 1509167
    [No Abstract]   [Full Text] [Related]  

  • 15. Subcellular trafficking of tubular MDM2 implicates in acute kidney injury to chronic kidney disease transition during multiple low-dose cisplatin exposure.
    Su H; Ye C; Lei CT; Tang H; Zeng JY; Yi F; Zhang C
    FASEB J; 2020 Jan; 34(1):1620-1636. PubMed ID: 31914692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-coding RNAs in kidney injury and repair.
    Liu Z; Wang Y; Shu S; Cai J; Tang C; Dong Z
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C177-C188. PubMed ID: 30969781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lethal (3) malignant brain tumor-like 2 (L3MBTL2) protein protects against kidney injury by inhibiting the DNA damage-p53-apoptosis pathway in renal tubular cells.
    Huang H; Xu C; Wang Y; Meng C; Liu W; Zhao Y; Huang XR; You W; Feng B; Zheng ZH; Huang Y; Lan HY; Qin J; Xia Y
    Kidney Int; 2018 Apr; 93(4):855-870. PubMed ID: 29276099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease.
    Singh P; Ricksten SE; Bragadottir G; Redfors B; Nordquist L
    Clin Exp Pharmacol Physiol; 2013 Feb; 40(2):138-47. PubMed ID: 23360244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition.
    Lu M; Wang P; Qiao Y; Jiang C; Ge Y; Flickinger B; Malhotra DK; Dworkin LD; Liu Z; Gong R
    Redox Biol; 2019 Sep; 26():101275. PubMed ID: 31349118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease.
    Huffstater T; Merryman WD; Gewin LS
    Semin Nephrol; 2020 Mar; 40(2):126-137. PubMed ID: 32303276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.