These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 23687907)
41. Development of a ReaxFF potential for Pd∕O and application to palladium oxide formation. Senftle TP; Meyer RJ; Janik MJ; van Duin AC J Chem Phys; 2013 Jul; 139(4):044109. PubMed ID: 23901962 [TBL] [Abstract][Full Text] [Related]
42. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst. Shin YK; Gai L; Raman S; van Duin ACT J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674 [TBL] [Abstract][Full Text] [Related]
43. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. van Duin AC; Zeiri Y; Dubnikova F; Kosloff R; Goddard WA J Am Chem Soc; 2005 Aug; 127(31):11053-62. PubMed ID: 16076213 [TBL] [Abstract][Full Text] [Related]
44. Development of a reactive force field for iron-oxyhydroxide systems. Aryanpour M; van Duin AC; Kubicki JD J Phys Chem A; 2010 Jun; 114(21):6298-307. PubMed ID: 20455552 [TBL] [Abstract][Full Text] [Related]
45. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Monti S; Corozzi A; Fristrup P; Joshi KL; Shin YK; Oelschlaeger P; van Duin AC; Barone V Phys Chem Chem Phys; 2013 Sep; 15(36):15062-77. PubMed ID: 23925839 [TBL] [Abstract][Full Text] [Related]
46. Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics. Ashraf C; van Duin AC J Phys Chem A; 2017 Feb; 121(5):1051-1068. PubMed ID: 28072539 [TBL] [Abstract][Full Text] [Related]
47. Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study. Islam MM; Zou C; van Duin AC; Raman S Phys Chem Chem Phys; 2016 Jan; 18(2):761-71. PubMed ID: 26626108 [TBL] [Abstract][Full Text] [Related]
48. Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. Liu L; Jaramillo-Botero A; Goddard WA; Sun H J Phys Chem A; 2012 Apr; 116(15):3918-25. PubMed ID: 22413941 [TBL] [Abstract][Full Text] [Related]
49. Reactive molecular simulations of protonation of water clusters and depletion of acidity in H-ZSM-5 zeolite. Joshi KL; Psofogiannakis G; van Duin AC; Raman S Phys Chem Chem Phys; 2014 Sep; 16(34):18433-41. PubMed ID: 25070603 [TBL] [Abstract][Full Text] [Related]
50. An Improved Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Set of Parameters for Simulation of Bulk and Molecular Systems Involving Titanium. Dolgonos G; Aradi B; Moreira NH; Frauenheim T J Chem Theory Comput; 2010 Jan; 6(1):266-78. PubMed ID: 26614337 [TBL] [Abstract][Full Text] [Related]
51. A test on reactive force fields for the study of silica dimerization reactions. Moqadam M; Riccardi E; Trinh TT; Åstrand PO; van Erp TS J Chem Phys; 2015 Nov; 143(18):184113. PubMed ID: 26567652 [TBL] [Abstract][Full Text] [Related]
52. ReaxFF/AMBER-A Framework for Hybrid Reactive/Nonreactive Force Field Molecular Dynamics Simulations. Rahnamoun A; Kaymak MC; Manathunga M; Götz AW; van Duin ACT; Merz KM; Aktulga HM J Chem Theory Comput; 2020 Dec; 16(12):7645-7654. PubMed ID: 33141581 [TBL] [Abstract][Full Text] [Related]
53. Water clusters in an argon matrix: infrared spectra from molecular dynamics simulations with a self-consistent charge density functional-based tight binding/force-field potential. Simon A; Iftner C; Mascetti J; Spiegelman F J Phys Chem A; 2015 Mar; 119(11):2449-67. PubMed ID: 25650885 [TBL] [Abstract][Full Text] [Related]
54. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
55. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field. Kamat AM; van Duin AC; Yakovlev A J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165 [TBL] [Abstract][Full Text] [Related]
56. Effects of Water on Tribochemical Wear of Silicon Oxide Interface: Molecular Dynamics (MD) Study with Reactive Force Field (ReaxFF). Yeon J; van Duin AC; Kim SH Langmuir; 2016 Feb; 32(4):1018-26. PubMed ID: 26756178 [TBL] [Abstract][Full Text] [Related]
57. Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene. Xiao H; Shi X; Hao F; Liao X; Zhang Y; Chen X J Phys Chem A; 2017 Aug; 121(32):6135-6149. PubMed ID: 28723088 [TBL] [Abstract][Full Text] [Related]
58. Development of the ReaxFF Reactive Force Field for Inherent Point Defects in the Si/Silica System. Nayir N; van Duin ACT; Erkoc S J Phys Chem A; 2019 May; 123(19):4303-4313. PubMed ID: 31017438 [TBL] [Abstract][Full Text] [Related]
59. Development of a ReaxFF Reactive Force Field for Pt/Cl Systems with Application to Platinum Metal Etching with Chlorine and Hydrogen Chloride Gases. Talkhoncheh MK; Shin YK; Kim J; Jahanmahin O; Fichthorn K; van Duin ACT J Phys Chem A; 2024 Sep; 128(38):8232-8243. PubMed ID: 39255462 [TBL] [Abstract][Full Text] [Related]
60. Development of a ReaxFF Force Field for Cu/S/C/H and Reactive MD Simulations of Methyl Thiolate Decomposition on Cu (100). Yeon J; Adams HL; Junkermeier CE; van Duin ACT; Tysoe WT; Martini A J Phys Chem B; 2018 Jan; 122(2):888-896. PubMed ID: 28981284 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]