These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23688151)

  • 1. Investigation of thrombin activity with PAR 1-based fluorogenic peptides.
    Vieira SM; dos Reis FG; Geraldo R; Dutra DL; Juliano L; Julianod MA; Mignaco JA; Zingali RB
    Protein Pept Lett; 2013 Oct; 20(10):1129-35. PubMed ID: 23688151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of protease exosite-interacting peptides that enhance substrate cleavage kinetics.
    Jabaiah AM; Getz JA; Witkowski WA; Hardy JA; Daugherty PS
    Biol Chem; 2012 Sep; 393(9):933-41. PubMed ID: 22944693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thrombin Exosite Maturation and Ligand Binding at ABE II Help Stabilize PAR-Binding Competent Conformation at ABE I.
    Billur R; Sabo TM; Maurer MC
    Biochemistry; 2019 Feb; 58(8):1048-1060. PubMed ID: 30672691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of exosite occupancy on the substrate specificity of thrombin.
    Ng NM; Quinsey NS; Matthews AY; Kaiserman D; Wijeyewickrema LC; Bird PI; Thompson PE; Pike RN
    Arch Biochem Biophys; 2009 Sep; 489(1-2):48-54. PubMed ID: 19638274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of thrombin bound to the uncleaved extracellular fragment of PAR1.
    Gandhi PS; Chen Z; Di Cera E
    J Biol Chem; 2010 May; 285(20):15393-15398. PubMed ID: 20236938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mimicking Cell Surface Enhancement of Protease Activity on the Surface of a Quantum Dot Nanoparticle.
    Jeen T; Algar WR
    Bioconjug Chem; 2018 Nov; 29(11):3783-3792. PubMed ID: 30362700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation of thrombin exosite I, by ligand-directed covalent modification.
    Yegneswaran S; Tiefenbrunn TK; Fernández JA; Dawson PE
    J Thromb Haemost; 2007 Oct; 5(10):2062-9. PubMed ID: 17883702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of exosite ligands to human thrombin. Re-evaluation of allosteric linkage between thrombin exosites I and II.
    Verhamme IM; Olson ST; Tollefsen DM; Bock PE
    J Biol Chem; 2002 Mar; 277(9):6788-98. PubMed ID: 11724802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic peptides and peptidomimetics as substrates and inhibitors of thrombin and other proteases in the blood coagulation system.
    Claeson G
    Blood Coagul Fibrinolysis; 1994 Jun; 5(3):411-36. PubMed ID: 8075312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAR-3 is a low-affinity substrate, high affinity effector of thrombin.
    Owen WG
    Biochem Biophys Res Commun; 2003 May; 305(1):166-8. PubMed ID: 12732212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using fluorogenic peptide substrates to assay matrix metalloproteinases.
    Fields GB
    Methods Mol Biol; 2010; 622():393-433. PubMed ID: 20135296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorogenic peptide-based substrates for monitoring thrombin activity.
    van Berkel SS; van der Lee B; van Delft FL; Wagenvoord R; Hemker HC; Rutjes FP
    ChemMedChem; 2012 Apr; 7(4):606-17. PubMed ID: 22294421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting substrate recognition by thrombin using the inactive mutant S195A.
    Krem MM; Di Cera E
    Biophys Chem; 2003; 100(1-3):315-23. PubMed ID: 12646374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease-activated receptor-4 uses dual prolines and an anionic retention motif for thrombin recognition and cleavage.
    Jacques SL; Kuliopulos A
    Biochem J; 2003 Dec; 376(Pt 3):733-40. PubMed ID: 13678420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Glu(192) in the allosteric control of the S(2)' and S(3)' subsites of thrombin.
    Marque PE; Spuntarelli R; Juliano L; Aiach M; Le Bonniec BF
    J Biol Chem; 2000 Jan; 275(2):809-16. PubMed ID: 10625611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of glyco-peptides as anti-cancer agents targeting thrombin-protease activated receptor-1 interaction.
    Chang YH; Wu JC; Yu HM; Hsu HT; Wu YT; Yu AL; Yu CT; Wong CH
    Chem Commun (Camb); 2020 May; 56(43):5827-5830. PubMed ID: 32329494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thrombin affinity mapping of its receptor tethered ligand.
    Witting JI; Brezniak DV; Andersen TT; Fenton JW
    Blood Coagul Fibrinolysis; 1997 Jan; 8(1):65-9. PubMed ID: 9105640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Catalytic effect of gamma-thrombin on synthetic low molecular weight peptide substrates].
    Shvachko LP; Poiarkova SA; Kostiuchenko NV; Kibirev VK
    Ukr Biokhim Zh (1978); 1992; 64(4):34-7. PubMed ID: 1448872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the substrate-binding exosites of two snake venom serine proteinases: molecular basis for the partition of two essential functions of thrombin.
    Maroun RC; Serrano SM
    J Mol Recognit; 2004; 17(1):51-61. PubMed ID: 14872537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.