These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23688155)

  • 1. Microporous "honeycomb" films support enhanced bone formation in vitro.
    Birch MA; Tanaka M; Kirmizidis G; Yamamoto S; Shimomura M
    Tissue Eng Part A; 2013 Sep; 19(17-18):2087-96. PubMed ID: 23688155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of cell adhesion receptors in human osteoblasts cultured on biofunctionalized poly-(epsilon-caprolactone) surfaces.
    Amato I; Ciapetti G; Pagani S; Marletta G; Satriano C; Baldini N; Granchi D
    Biomaterials; 2007 Sep; 28(25):3668-78. PubMed ID: 17524476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of PLGA doping of polycaprolactone films on the control of osteoblast adhesion and proliferation in vitro.
    Tang ZG; Hunt JA
    Biomaterials; 2006 Sep; 27(25):4409-18. PubMed ID: 16677705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent.
    Wu X; Wang S
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4966-75. PubMed ID: 22889037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(epsilon-caprolactone)/chitin and poly(epsilon-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability.
    Honma T; Zhao L; Asakawa N; Inoue Y
    Macromol Biosci; 2006 Mar; 6(3):241-9. PubMed ID: 16534761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does translational symmetry matter on the micro scale? Fibroblastic and osteoblastic interactions with the topographically distinct poly(ε-caprolactone)/hydroxyapatite thin films.
    Uskoković V; Desai TA
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13209-20. PubMed ID: 25014232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast growth and function in porous poly epsilon -caprolactone matrices for bone repair: a preliminary study.
    Ciapetti G; Ambrosio L; Savarino L; Granchi D; Cenni E; Baldini N; Pagani S; Guizzardi S; Causa F; Giunti A
    Biomaterials; 2003 Sep; 24(21):3815-24. PubMed ID: 12818554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH
    J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone.
    Marletta G; Ciapetti G; Satriano C; Pagani S; Baldini N
    Biomaterials; 2005 Aug; 26(23):4793-804. PubMed ID: 15763259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor.
    Gomes ME; Holtorf HL; Reis RL; Mikos AG
    Tissue Eng; 2006 Apr; 12(4):801-9. PubMed ID: 16674293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and preliminary in vitro evaluation of a bFGF-releasing heparin-conjugated poly(ε-caprolactone) membrane for guided bone regeneration.
    Cao C; Song Y; Yao Q; Yao Y; Wang T; Huang B; Gong P
    J Biomater Sci Polym Ed; 2015; 26(10):600-16. PubMed ID: 26065539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities.
    Kim Y; Kim G
    Colloids Surf B Biointerfaces; 2015 Jan; 125():181-9. PubMed ID: 25486326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of poly(ε-caprolactone) surface properties for apatite formation and improved osteogenic stimulation.
    Choong C; Yuan S; Thian ES; Oyane A; Triffitt J
    J Biomed Mater Res A; 2012 Feb; 100(2):353-61. PubMed ID: 22065559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly-(epsilon-caprolactone)/hydroxyapa- tite composite.
    Giordano C; Causa F; Silvio LD; Ambrosio L
    J Mater Sci Mater Med; 2007 Apr; 18(4):653-60. PubMed ID: 17546428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion, intracellular signalling and osteogenic differentiation of mesenchymal progenitor cells and preosteoblasts on poly(epsilon)caprolactone films functionalized by peptides derived from fibronectin and/or BMP-9.
    Jann J; Drevelle O; Lauzon MA; Faucheux N
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():111088. PubMed ID: 32994028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfabricated discontinuous-edge surface topographies influence osteoblast adhesion, migration, cytoskeletal organization, and proliferation and enhance matrix and mineral deposition in vitro.
    Hamilton DW; Wong KS; Brunette DM
    Calcif Tissue Int; 2006 May; 78(5):314-25. PubMed ID: 16604286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-diameter porous poly (epsilon-caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells.
    McMillan JR; Akiyama M; Tanaka M; Yamamoto S; Goto M; Abe R; Sawamura D; Shimomura M; Shimizu H
    Tissue Eng; 2007 Apr; 13(4):789-98. PubMed ID: 17228993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.