These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23688158)

  • 1. Microtube bundle carbon derived from Paulownia sawdust for hybrid supercapacitor electrodes.
    Liu X; Zheng M; Xiao Y; Yang Y; Yang L; Liu Y; Lei B; Dong H; Zhang H; Fu H
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4667-77. PubMed ID: 23688158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.
    Torad NL; Salunkhe RR; Li Y; Hamoudi H; Imura M; Sakka Y; Hu CC; Yamauchi Y
    Chemistry; 2014 Jun; 20(26):7895-900. PubMed ID: 24788922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.
    Huang C; Sun T; Hulicova-Jurcakova D
    ChemSusChem; 2013 Dec; 6(12):2330-9. PubMed ID: 24039010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.
    Farma R; Deraman M; Awitdrus A; Talib IA; Taer E; Basri NH; Manjunatha JG; Ishak MM; Dollah BN; Hashmi SA
    Bioresour Technol; 2013 Mar; 132():254-61. PubMed ID: 23411456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.
    Bai S; Tan G; Li X; Zhao Q; Meng Y; Wang Y; Zhang Y; Xiao D
    Chem Asian J; 2016 Jun; 11(12):1828-36. PubMed ID: 27124360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH; Liang C; Yiacoumi S; Dai S; Tsouris C
    J Colloid Interface Sci; 2006 Oct; 302(1):54-61. PubMed ID: 16842809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.
    Wei L; Nitta N; Yushin G
    ACS Nano; 2013 Aug; 7(8):6498-506. PubMed ID: 23815346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors.
    Nabais JM; Teixeira JG; Almeida I
    Bioresour Technol; 2011 Feb; 102(3):2781-7. PubMed ID: 21146406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.
    Lee JS; Shin DH; Jun J; Lee C; Jang J
    ChemSusChem; 2014 Jun; 7(6):1676-83. PubMed ID: 24706636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior pseudocapacitive behavior of confined lignin nanocrystals for renewable energy-storage materials.
    Kim SK; Kim YK; Lee H; Lee SB; Park HS
    ChemSusChem; 2014 Apr; 7(4):1094-101. PubMed ID: 24678040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer.
    Chen XY; Xie DH; Chen C; Liu JW
    J Colloid Interface Sci; 2013 Mar; 393():241-8. PubMed ID: 23137906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes.
    Hulicova-Jurcakova D; Fiset E; Lu GQ; Bandosz TJ
    ChemSusChem; 2012 Nov; 5(11):2188-99. PubMed ID: 23086734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode.
    Lee M; Kim GP; Don Song H; Park S; Yi J
    Nanotechnology; 2014 Aug; 25(34):345601. PubMed ID: 25092115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors.
    Simon P; Gogotsi Y
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3457-67. PubMed ID: 20566518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of ultrasonic and HNO3 treatment of activated carbon from fruit stones on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors.
    Venhryn BY; Stotsko ZA; Grygorchak II; Bakhmatyuk BP; Mudry SI
    Ultrason Sonochem; 2013 Sep; 20(5):1302-7. PubMed ID: 23541908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon materials for supercapacitor application.
    Frackowiak E
    Phys Chem Chem Phys; 2007 Apr; 9(15):1774-85. PubMed ID: 17415488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.
    Li Y; Zhang Q; Zhang J; Jin L; Zhao X; Xu T
    Sci Rep; 2015 Sep; 5():14155. PubMed ID: 26394834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor.
    Pognon G; Cougnon C; Mayilukila D; Bélanger D
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3788-96. PubMed ID: 22803766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.