These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23688257)

  • 21. Nanocone-based plasmonic metamaterials.
    Córdova-Castro RM; Krasavin AV; Nasir ME; Zayats AV; Dickson W
    Nanotechnology; 2019 Feb; 30(5):055301. PubMed ID: 30521490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.
    Caselli N; La China F; Bao W; Riboli F; Gerardino A; Li L; Linfield EH; Pagliano F; Fiore A; Schuck PJ; Cabrini S; Weber-Bargioni A; Gurioli M; Intonti F
    Sci Rep; 2015 Jun; 5():9606. PubMed ID: 26045401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.
    Ghosh PK; Debu DT; French DA; Herzog JB
    PLoS One; 2017; 12(5):e0177463. PubMed ID: 28486554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
    Chong X; Zhang Y; Li E; Kim KJ; Ohodnicki PR; Chang CH; Wang AX
    ACS Sens; 2018 Jan; 3(1):230-238. PubMed ID: 29262684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong coupling between magnetic resonance and propagating surface plasmons at visible light frequencies.
    Wang J; Yang W; Radjenovic PM; He Y; Yang Z; Li JF
    J Chem Phys; 2020 Jan; 152(1):014702. PubMed ID: 31914769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong coupling in hybrid metal-dielectric nanoresonators.
    Decker M; Pertsch T; Staude I
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2090):. PubMed ID: 28220004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing Eu(3+) magnetic dipole emission by resonant plasmonic nanostructures.
    Hussain R; Kruk SS; Bonner CE; Noginov MA; Staude I; Kivshar YS; Noginova N; Neshev DN
    Opt Lett; 2015 Apr; 40(8):1659-62. PubMed ID: 25872041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
    Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z
    Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation.
    Liu SD; Zhang ZS; Wang QQ
    Opt Express; 2009 Feb; 17(4):2906-17. PubMed ID: 19219194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas.
    Muskens OL; Giannini V; Sanchez-Gil JA; Gómez Rivas J
    Nano Lett; 2007 Sep; 7(9):2871-5. PubMed ID: 17683156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
    Song J; Zhou W
    Nano Lett; 2018 Jul; 18(7):4409-4416. PubMed ID: 29923727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Top-up fabrication of gold nanorings.
    Scheeler SP; Lehr D; Kley EB; Pacholski C
    Chem Asian J; 2014 Aug; 9(8):2072-6. PubMed ID: 24819890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origin of off-resonance non-linear optical activity of a gold chiral nanomaterial.
    Abdulrahman N; Syme CD; Jack C; Karimullah A; Barron LD; Gadegaard N; Kadodwala M
    Nanoscale; 2013 Dec; 5(24):12651-7. PubMed ID: 24186434
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the magnetic field of light at optical frequencies.
    Burresi M; van Oosten D; Kampfrath T; Schoenmaker H; Heideman R; Leinse A; Kuipers L
    Science; 2009 Oct; 326(5952):550-3. PubMed ID: 19797622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silver Double Nanorings with Circular Hot Zone.
    Yoo S; Lee J; Kim J; Kim JM; Haddadnezhad M; Lee S; Choi S; Park D; Nam JM; Park S
    J Am Chem Soc; 2020 Jul; 142(28):12341-12348. PubMed ID: 32530613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electromagnetic plasmon propagation and coupling through gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures.
    Ahmadivand A; Golmohammadi S
    Appl Opt; 2014 Jun; 53(18):3832-40. PubMed ID: 24979412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Converting Plasmonic Light Scattering to Confined Light Absorption and Creating Plexcitons by Coupling a Gold Nano-pyramid Array onto a Silica-Gold Film.
    Zheng P; Kasani S; Wu N
    Nanoscale Horiz; 2019 Mar; 4(2):516-525. PubMed ID: 31463080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.