These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23688329)

  • 1. Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties.
    Trippe K; McPhail K; Armstrong D; Azevedo M; Banowetz G
    BMC Microbiol; 2013 May; 13():111. PubMed ID: 23688329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species.
    de Bruijn I; de Kock MJ; Yang M; de Waard P; van Beek TA; Raaijmakers JM
    Mol Microbiol; 2007 Jan; 63(2):417-28. PubMed ID: 17241198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved, high-quality draft genome sequence of the Germination-Arrest Factor-producing Pseudomonas fluorescens WH6.
    Kimbrel JA; Givan SA; Halgren AB; Creason AL; Mills DI; Banowetz GM; Armstrong DJ; Chang JH
    BMC Genomics; 2010 Sep; 11():522. PubMed ID: 20920191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6.
    Okrent RA; Trippe KM; Maselko M; Manning V
    Microbiology (Reading); 2017 Feb; 163(2):207-217. PubMed ID: 28270265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history.
    Huang WE; Bailey MJ; Thompson IP; Whiteley AS; Spiers AJ
    Microb Ecol; 2007 Apr; 53(3):414-25. PubMed ID: 17334857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of 4-Formylaminooxyvinylglycine Production by
    Manning VA; Trippe KM
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33807194
    [No Abstract]   [Full Text] [Related]  

  • 8. Detection of 4-formylaminooxyvinylglycine in culture filtrates of Pseudomonas fluorescens WH6 and Pantoea ananatis BRT175 by laser ablation electrospray ionization-mass spectrometry.
    Okrent RA; Trippe KM; Manning VA; Walsh CM
    PLoS One; 2018; 13(7):e0200481. PubMed ID: 29990341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens.
    de Bruijn I; Raaijmakers JM
    Appl Environ Microbiol; 2009 Jul; 75(14):4753-61. PubMed ID: 19447950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25.
    Cheng X; van der Voort M; Raaijmakers JM
    Environ Microbiol Rep; 2015 Feb; 7(1):139-47. PubMed ID: 25356880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global Regulatory Roles of the Histidine-Responsive Transcriptional Repressor HutC in Pseudomonas fluorescens SBW25.
    Naren N; Zhang XX
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32291279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Interactions between
    Boiteau RM; Markillie LM; Hoyt DW; Hu D; Chu RK; Mitchell HD; Pasa-Tolic L; Jansson JK; Jansson C
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33402348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25.
    Preston GM; Bertrand N; Rainey PB
    Mol Microbiol; 2001 Sep; 41(5):999-1014. PubMed ID: 11555282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens.
    Silby MW; Cerdeño-Tárraga AM; Vernikos GS; Giddens SR; Jackson RW; Preston GM; Zhang XX; Moon CD; Gehrig SM; Godfrey SA; Knight CG; Malone JG; Robinson Z; Spiers AJ; Harris S; Challis GL; Yaxley AM; Harris D; Seeger K; Murphy L; Rutter S; Squares R; Quail MA; Saunders E; Mavromatis K; Brettin TS; Bentley SD; Hothersall J; Stephens E; Thomas CM; Parkhill J; Levy SB; Rainey PB; Thomson NR
    Genome Biol; 2009; 10(5):R51. PubMed ID: 19432983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic Origin of Formylaminooxyvinylglycine and Characterization of the Formyltransferase GvgI.
    Lescallette AR; Dunn ZD; Manning VA; Trippe KM; Li B
    Biochemistry; 2022 Oct; 61(19):2159-2164. PubMed ID: 36126313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Population Size, Activity, and Distribution of gfp-luxAB-Tagged Pseudomonas fluorescens SBW25 during Colonization of Wheat.
    Unge A; Jansson J
    Microb Ecol; 2001 Feb; 41(4):290-300. PubMed ID: 12032602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms.
    Bonnichsen L; Bygvraa Svenningsen N; Rybtke M; de Bruijn I; Raaijmakers JM; Tolker-Nielsen T; Nybroe O
    Microbiology (Reading); 2015 Dec; 161(12):2289-97. PubMed ID: 26419730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective inhibition of Erwinia amylovora by the herbicidally active germination-arrest factor (GAF) produced by Pseudomonas bacteria.
    Halgren A; Azevedo M; Mills D; Armstrong D; Thimmaiah M; McPhail K; Banowetz G
    J Appl Microbiol; 2011 Oct; 111(4):949-59. PubMed ID: 21726360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of natural product compounds as quorum sensing inhibitors in Pseudomonas fluorescens P07 through virtual screening.
    Ding T; Li T; Li J
    Bioorg Med Chem; 2018 Aug; 26(14):4088-4099. PubMed ID: 30100021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization.
    Zhang XX; Rainey PB
    Mol Plant Microbe Interact; 2007 May; 20(5):581-8. PubMed ID: 17506335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.