These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23688457)

  • 1. Oil-in-water emulsions stabilized by sodium phosphorylated chitosan.
    Chongprakobkit S; Maniratanachote R; Tachaboonyakiat W
    Carbohydr Polym; 2013 Jul; 96(1):82-90. PubMed ID: 23688457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of molecular weight and degree of deacetylation of chitosan on the formation of oil-in-water emulsions stabilized by surfactant-chitosan membranes.
    Mun S; Decker EA; McClements DJ
    J Colloid Interface Sci; 2006 Apr; 296(2):581-90. PubMed ID: 16203009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers.
    Mun S; Decker EA; McClements DJ
    Langmuir; 2005 Jul; 21(14):6228-34. PubMed ID: 15982024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of chitosan-microencapsulated orange oil prepared by spray-drying and its stability to detergents.
    Li Y; Ai L; Yokoyama W; Shoemaker CF; Wei D; Ma J; Zhong F
    J Agric Food Chem; 2013 Apr; 61(13):3311-9. PubMed ID: 23473289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes.
    Ogawa S; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Apr; 51(9):2806-12. PubMed ID: 12696977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification.
    Liu H; Wang C; Zou S; Wei Z; Tong Z
    Langmuir; 2012 Jul; 28(30):11017-24. PubMed ID: 22762435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles.
    Wang J; Yang F; Tan J; Liu G; Xu J; Sun D
    Langmuir; 2010 Apr; 26(8):5397-404. PubMed ID: 20020723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double inversion of emulsions induced by salt concentration.
    Zhang J; Li L; Wang J; Sun H; Xu J; Sun D
    Langmuir; 2012 May; 28(17):6769-75. PubMed ID: 22475400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering interfacial properties by anionic surfactant-chitosan complexes to improve stability of oil-in-water emulsions.
    Zinoviadou KG; Scholten E; Moschakis T; Biliaderis CG
    Food Funct; 2012 Mar; 3(3):312-9. PubMed ID: 22298029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase inversion of emulsions containing a lipophilic surfactant induced by clay concentration.
    Zhang J; Li L; Wang J; Xu J; Sun D
    Langmuir; 2013 Mar; 29(12):3889-94. PubMed ID: 23445467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and development of nevirapine loaded surfactant free chitosan microemulsion.
    Bajaj H; Bisht S; Yadav M; Singh V; Singh M
    Acta Pol Pharm; 2011; 68(6):981-8. PubMed ID: 22125965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes.
    Ogawa S; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Aug; 51(18):5522-7. PubMed ID: 12926908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of interfacial characteristics on Ostwald ripening in hydrocarbon oil-in-water emulsions.
    Mun S; McClements DJ
    Langmuir; 2006 Feb; 22(4):1551-4. PubMed ID: 16460073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.
    Kaltsa O; Michon C; Yanniotis S; Mandala I
    Ultrason Sonochem; 2013 May; 20(3):881-91. PubMed ID: 23266492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microencapsulation of menthol by crosslinked chitosan via porous glass membrane emulsification technique and their controlled release properties.
    Nuisin R; Krongsin J; Noppakundilograt S; Kiatkamjornwong S
    J Microencapsul; 2013; 30(5):498-509. PubMed ID: 23398357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of water/oil/water emulsions stabilized by polyglycerol polyricinoleate and whey protein isolate.
    Mun S; Choi Y; Rho SJ; Kang CG; Park CH; Kim YR
    J Food Sci; 2010 Mar; 75(2):E116-25. PubMed ID: 20492231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes.
    Yin B; Deng W; Xu K; Huang L; Yao P
    J Colloid Interface Sci; 2012 Aug; 380(1):51-9. PubMed ID: 22682324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system.
    Chen XG; Lee CM; Park HJ
    J Agric Food Chem; 2003 May; 51(10):3135-9. PubMed ID: 12720404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.