These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23688834)
21. A cross-scale numerical modeling system for management support of oil spill accidents. Azevedo A; Oliveira A; Fortunato AB; Zhang J; Baptista AM Mar Pollut Bull; 2014 Mar; 80(1-2):132-47. PubMed ID: 24472369 [TBL] [Abstract][Full Text] [Related]
22. Measuring oil residence time with GPS-drifters, satellites, and Unmanned Aerial Systems (UAS). Garcia-Pineda O; Androulidakis Y; Le Hénaff M; Kourafalou V; Hole LR; Kang H; Staples G; Ramirez E; DiPinto L Mar Pollut Bull; 2020 Jan; 150():110644. PubMed ID: 31733903 [TBL] [Abstract][Full Text] [Related]
23. Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone. Dalyander PS; Long JW; Plant NG; Thompson DM Mar Pollut Bull; 2014 Mar; 80(1-2):200-9. PubMed ID: 24503377 [TBL] [Abstract][Full Text] [Related]
24. Dispersion analysis of the 2017 Persian Gulf oil spill based on remote sensing data and numerical modelling. Souza Júnior JMN; Mendonça LFF; da Silva Costa H; Freitas RAP; Casagrande F; da Silva Lindemann D; do Nascimento Reis RA; Lentini CAD; de Cunha Lima AT Mar Pollut Bull; 2024 Aug; 205():116639. PubMed ID: 38964190 [TBL] [Abstract][Full Text] [Related]
25. Rebuttal to published article "Review of oil spill remote sensing" by M. Fingas and C. Brown. Svejkovsky J; Lewis A; Muskat J; Andersen JH; Benz S; Garcia-Pineda O Mar Pollut Bull; 2015 Apr; 93(1-2):294-7. PubMed ID: 25749314 [No Abstract] [Full Text] [Related]
26. Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition. Zhou Z; Liu Z; Guo L Mar Pollut Bull; 2013 Jan; 66(1-2):164-75. PubMed ID: 23174304 [TBL] [Abstract][Full Text] [Related]
27. Identification of sources of tar balls deposited along the Goa coast, India, using fingerprinting techniques. Suneel V; Vethamony P; Zakaria MP; Naik BG; Prasad KV Mar Pollut Bull; 2013 May; 70(1-2):81-9. PubMed ID: 23522683 [TBL] [Abstract][Full Text] [Related]
28. Source apportionment in oil spill remediation. Muñoz J; Mudge SM; Loyola-Sepulveda R; Muñoz G; Bravo-Linares C J Environ Monit; 2012 May; 14(6):1671-6. PubMed ID: 22588176 [TBL] [Abstract][Full Text] [Related]
29. III: Use of biomarkers as Risk Indicators in Environmental Risk Assessment of oil based discharges offshore. Sanni S; Lyng E; Pampanin DM Mar Environ Res; 2017 Jun; 127():1-10. PubMed ID: 28038790 [TBL] [Abstract][Full Text] [Related]
30. Review of oil spill remote sensing. Fingas M; Brown C Mar Pollut Bull; 2014 Jun; 83(1):9-23. PubMed ID: 24759508 [TBL] [Abstract][Full Text] [Related]
31. Hindcast of oil-spill pollution during the Lebanon crisis in the Eastern Mediterranean, July-August 2006. Coppini G; De Dominicis M; Zodiatis G; Lardner R; Pinardi N; Santoleri R; Colella S; Bignami F; Hayes DR; Soloviev D; Georgiou G; Kallos G Mar Pollut Bull; 2011 Jan; 62(1):140-53. PubMed ID: 20880556 [TBL] [Abstract][Full Text] [Related]
32. Effects of an experimental in situ diesel oil spill on the benthic community of unvegetated tidal flats in a subtropical estuary (Paranaguá Bay, Brazil). Egres AG; Martins CC; Oliveira VM; Lana Pda C Mar Pollut Bull; 2012 Dec; 64(12):2681-91. PubMed ID: 23137553 [TBL] [Abstract][Full Text] [Related]
33. Improving a prediction system for oil spills in the Yellow Sea: effect of tides on subtidal flow. Kim CS; Cho YK; Choi BJ; Jung KT; You SH Mar Pollut Bull; 2013 Mar; 68(1-2):85-92. PubMed ID: 23321596 [TBL] [Abstract][Full Text] [Related]
34. Compositional properties characterizing commonly transported oils and controlling their fate in the marine environment. Radović JR; Domínguez C; Laffont K; Díez S; Readman JW; Albaigés J; Bayona JM J Environ Monit; 2012 Dec; 14(12):3220-9. PubMed ID: 23117332 [TBL] [Abstract][Full Text] [Related]
35. Vitellogenin and lipovitellin from the prawn Macrobrachium borellii as hydrocarbon pollution biomarker. García CF; Heras H Mar Pollut Bull; 2012 Aug; 64(8):1631-6. PubMed ID: 22704151 [TBL] [Abstract][Full Text] [Related]
36. Estimating discharge rates of oily wastes and deterrence based on aerial surveillance data collected in western Canadian marine waters. O'Hara PD; Serra-Sogas N; Canessa R; Keller P; Pelot R Mar Pollut Bull; 2013 Apr; 69(1-2):157-64. PubMed ID: 23453813 [TBL] [Abstract][Full Text] [Related]
37. A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory. Tian S; Huang X; Li H Mar Pollut Bull; 2017 Mar; 116(1-2):95-102. PubMed ID: 28041621 [TBL] [Abstract][Full Text] [Related]
38. An optical remote sensing model for estimating oil slick thickness based on two-beam interference theory. Lu Y; Li X; Tian Q; Han W Opt Express; 2012 Oct; 20(22):24496-504. PubMed ID: 23187213 [TBL] [Abstract][Full Text] [Related]
39. Comparison of pollution levels on the Mississippi Gulf Coast during the 2010 Gulf BP oil spill to ecological and health-based standards. Beasley J; Reddy RS; Tchounwou P; Kafoury R Rev Environ Health; 2012; 27(2-3):67-74. PubMed ID: 23109537 [TBL] [Abstract][Full Text] [Related]
40. Evidence of hydrocarbon contamination from the Burgan oil field, Kuwait: interpretations from thermal remote sensing data. ud Din S; Al Dousari A; Literathy P J Environ Manage; 2008 Mar; 86(4):605-15. PubMed ID: 17291680 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]