These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 23689017)

  • 1. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.
    Reynaud A; Takerkart S; Masson GS; Chavane F
    Neuroimage; 2011 Jan; 54(2):1196-210. PubMed ID: 20800686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey.
    Yang Z; Heeger DJ; Seidemann E
    J Neurophysiol; 2007 Aug; 98(2):1002-14. PubMed ID: 17522170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of spatial biological artifacts in functional maps by local similarity minimization.
    Fekete T; Omer DB; Naaman S; Grinvald A
    J Neurosci Methods; 2009 Mar; 178(1):31-9. PubMed ID: 19101591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of receptive field size from higher harmonics in visuotopic mapping using continuous stimulation optical imaging.
    Vanni MP; Provost J; Lesage F; Casanova C
    J Neurosci Methods; 2010 May; 189(1):138-50. PubMed ID: 20346978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging.
    Raguet H; Monier C; Foubert L; Ferezou I; Fregnac Y; Peyré G
    J Neurosci Methods; 2016 Jan; 257():76-96. PubMed ID: 26434707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic signal recording from a monkey whose behavior was maintained by a schedule of reinforcement.
    Wakita M
    Neurosci Res; 2004 Sep; 50(1):45-53. PubMed ID: 15288498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys.
    Shtoyerman E; Arieli A; Slovin H; Vanzetta I; Grinvald A
    J Neurosci; 2000 Nov; 20(21):8111-21. PubMed ID: 11050133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation.
    Meirovithz E; Ayzenshtat I; Werner-Reiss U; Shamir I; Slovin H
    Cereb Cortex; 2012 Feb; 22(2):294-307. PubMed ID: 21653284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity.
    Afrashteh N; Inayat S; Mohsenvand M; Mohajerani MH
    Neuroimage; 2017 Jun; 153():58-74. PubMed ID: 28351691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent component analysis of high-resolution imaging data identifies distinct functional domains.
    Reidl J; Starke J; Omer DB; Grinvald A; Spors H
    Neuroimage; 2007 Jan; 34(1):94-108. PubMed ID: 17070071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Independent encoding of grating motion across stationary feature maps in primary visual cortex visualized with voltage-sensitive dye imaging.
    Onat S; Nortmann N; Rekauzke S; König P; Jancke D
    Neuroimage; 2011 Apr; 55(4):1763-70. PubMed ID: 21232616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution optical imaging of functional brain architecture in the awake monkey.
    Grinvald A; Frostig RD; Siegel RM; Bartfeld E
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11559-63. PubMed ID: 1763070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressive Traveling Waves Shape Representations of Illusory Motion in Primary Visual Cortex of Awake Primate.
    Chemla S; Reynaud A; di Volo M; Zerlaut Y; Perrinet L; Destexhe A; Chavane F
    J Neurosci; 2019 May; 39(22):4282-4298. PubMed ID: 30886010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular organization in area 21a of the cat revealed by optical imaging: comparison with the primary visual cortex.
    Villeneuve MY; Vanni MP; Casanova C
    Neuroscience; 2009 Dec; 164(3):1320-33. PubMed ID: 19712725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes.
    Shoham D; Glaser DE; Arieli A; Kenet T; Wijnbergen C; Toledo Y; Hildesheim R; Grinvald A
    Neuron; 1999 Dec; 24(4):791-802. PubMed ID: 10624943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex.
    Blasdel GG; Salama G
    Nature; 1986 Jun 5-11; 321(6070):579-85. PubMed ID: 3713842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.