These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23689477)

  • 1. Under-water superoleophobic glass: unexplored role of the surfactant-rich solvent.
    Waghmare PR; Das S; Mitra SK
    Sci Rep; 2013; 3():1862. PubMed ID: 23689477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.
    Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Contact Angles of Aqueous Droplets on Hydrophilic and Hydrophobic Surfaces by Surfactants.
    Staniscia F; Guzman HV; Kanduč M
    J Phys Chem B; 2022 May; 126(17):3374-3384. PubMed ID: 35468298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating wettability alteration during MEOR process, a micro/macro scale analysis.
    Karimi M; Mahmoodi M; Niazi A; Al-Wahaibi Y; Ayatollahi S
    Colloids Surf B Biointerfaces; 2012 Jun; 95():129-36. PubMed ID: 22445747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces.
    Zhang C; Zhao X; Lei J; Ma Y; Du F
    Soft Matter; 2017 Jan; 13(2):503-513. PubMed ID: 27934995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of robust superhydrophobic surfaces.
    Wang D; Sun Q; Hokkanen MJ; Zhang C; Lin FY; Liu Q; Zhu SP; Zhou T; Chang Q; He B; Zhou Q; Chen L; Wang Z; Ras RHA; Deng X
    Nature; 2020 Jun; 582(7810):55-59. PubMed ID: 32494077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulating Underwater Oil Adhesion on Superoleophobic Copper Films through Assembling n-Alkanoic Acids.
    Cheng Z; Liu H; Lai H; Du Y; Fu K; Li C; Yu J; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20410-7. PubMed ID: 26307917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid chemistry at the oil-water interface: self-propelled oil droplets.
    Hanczyc MM; Toyota T; Ikegami T; Packard N; Sugawara T
    J Am Chem Soc; 2007 Aug; 129(30):9386-91. PubMed ID: 17616129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface structure of sodium dodecyl sulfate surfactant and oil at the oil-in-water droplet liquid/liquid interface: a manifestation of a nonequilibrium surface state.
    de Aguiar HB; Strader ML; de Beer AG; Roke S
    J Phys Chem B; 2011 Mar; 115(12):2970-8. PubMed ID: 21391538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil.
    Jin H; Kettunen M; Laiho A; Pynnönen H; Paltakari J; Marmur A; Ikkala O; Ras RH
    Langmuir; 2011 Mar; 27(5):1930-4. PubMed ID: 21247181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy.
    Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P
    Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency.
    Martin S; Brown PS; Bhushan B
    Adv Colloid Interface Sci; 2017 Mar; 241():1-23. PubMed ID: 28143675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.
    Zhang W; Zhu Y; Liu X; Wang D; Li J; Jiang L; Jin J
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):856-60. PubMed ID: 24307602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why re-entrant surface topography is needed for robust oleophobicity.
    Nosonovsky M; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.