BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23689613)

  • 1. Insulin signaling controls the expression of O-GlcNAc transferase and its interaction with lipid microdomains.
    Perez-Cervera Y; Dehennaut V; Aquino Gil M; Guedri K; Solórzano Mata CJ; Olivier-Van Stichelen S; Michalski JC; Foulquier F; Lefebvre T
    FASEB J; 2013 Sep; 27(9):3478-86. PubMed ID: 23689613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. o-GlcNAc transferase is activated by CaMKIV-dependent phosphorylation under potassium chloride-induced depolarization in NG-108-15 cells.
    Song M; Kim HS; Park JM; Kim SH; Kim IH; Ryu SH; Suh PG
    Cell Signal; 2008 Jan; 20(1):94-104. PubMed ID: 18029144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. O-GlcNAc modification, insulin signaling and diabetic complications.
    Issad T; Masson E; Pagesy P
    Diabetes Metab; 2010 Dec; 36(6 Pt 1):423-35. PubMed ID: 21074472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells.
    Goldberg H; Whiteside C; Fantus IG
    Am J Physiol Endocrinol Metab; 2011 Oct; 301(4):E713-26. PubMed ID: 21712532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane rafts segregate pro- from anti-apoptotic insulin-like growth factor-I receptor signaling in colon carcinoma cells stimulated by members of the tumor necrosis factor superfamily.
    Remacle-Bonnet M; Garrouste F; Baillat G; Andre F; Marvaldi J; Pommier G
    Am J Pathol; 2005 Sep; 167(3):761-73. PubMed ID: 16127155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role for lipid raft-associated Src kinases in activation of PI3K-Akt signalling.
    Arcaro A; Aubert M; Espinosa del Hierro ME; Khanzada UK; Angelidou S; Tetley TD; Bittermann AG; Frame MC; Seckl MJ
    Cell Signal; 2007 May; 19(5):1081-92. PubMed ID: 17275257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haloperidol disrupts lipid rafts and impairs insulin signaling in SH-SY5Y cells.
    Sánchez-Wandelmer J; Dávalos A; de la Peña G; Cano S; Giera M; Canfrán-Duque A; Bracher F; Martín-Hidalgo A; Fernández-Hernando C; Lasunción MA; Busto R
    Neuroscience; 2010 Apr; 167(1):143-53. PubMed ID: 20123000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the kappa opioid receptor in lipid rafts.
    Xu W; Yoon SI; Huang P; Wang Y; Chen C; Chong PL; Liu-Chen LY
    J Pharmacol Exp Ther; 2006 Jun; 317(3):1295-306. PubMed ID: 16505160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibodies and activity measurements for the detection of O-GlcNAc transferase and assay of its substrate, UDP-GlcNAc.
    Lefebvre T; Drougat L; Olivier-Van Stichelen S; Michalski JC; Vercoutter-Edouart AS
    Methods Mol Biol; 2013; 1022():147-59. PubMed ID: 23765660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms involved in cholesterol-induced neuronal insulin resistance.
    Taghibiglou C; Bradley CA; Gaertner T; Li Y; Wang Y; Wang YT
    Neuropharmacology; 2009 Sep; 57(3):268-76. PubMed ID: 19523477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells.
    Das S; Chakraborty S; Basu A
    J Neurochem; 2010 Oct; 115(2):537-49. PubMed ID: 20722967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fas signaling induces raft coalescence that is blocked by cholesterol depletion in human RPE cells undergoing apoptosis.
    Lincoln JE; Boling M; Parikh AN; Yeh Y; Gilchrist DG; Morse LS
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2172-8. PubMed ID: 16639029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes.
    Kabouridis PS; Janzen J; Magee AL; Ley SC
    Eur J Immunol; 2000 Mar; 30(3):954-63. PubMed ID: 10741414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin receptor activation through its accumulation in lipid rafts by mild electrical stress.
    Morino-Koga S; Yano S; Kondo T; Shimauchi Y; Matsuyama S; Okamoto Y; Suico MA; Koga T; Sato T; Shuto T; Arima H; Wada I; Araki E; Kai H
    J Cell Physiol; 2013 Feb; 228(2):439-46. PubMed ID: 22740366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of O-GlcNAcylation alleviates insulin signaling pathway impairment following arsenic exposure via suppressing the AMPK/mTOR-autophagy pathway.
    Zhang W; Zeng S; Huang J; Tian X; Wu J; Guo L; Liang Y
    Toxicol Lett; 2024 Jun; 397():67-78. PubMed ID: 38734222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective insulin receptor activation and altered lipid rafts in Niemann-Pick type C disease hepatocytes.
    Vainio S; Bykov I; Hermansson M; Jokitalo E; Somerharju P; Ikonen E
    Biochem J; 2005 Nov; 391(Pt 3):465-72. PubMed ID: 15943586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD40 translocation to lipid rafts: signaling requirements and downstream biological events.
    Nadiri A; Polyak MJ; Jundi M; Alturaihi H; Reyes-Moreno C; Hassan GS; Mourad W
    Eur J Immunol; 2011 Aug; 41(8):2358-67. PubMed ID: 21567389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of lipid rafts in human activated T cells.
    Tani-ichi S; Maruyama K; Kondo N; Nagafuku M; Kabayama K; Inokuchi J; Shimada Y; Ohno-Iwashita Y; Yagita H; Kawano S; Kosugi A
    Int Immunol; 2005 Jun; 17(6):749-58. PubMed ID: 15967787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of lipid rafts in multiple signal transductions mediated by two isoforms of thromboxane A₂ receptor: dependency on receptor isoforms and downstream signaling types.
    Goto S; Saito M; Obara Y; Moriya T; Nakahata N
    Eur J Pharmacol; 2012 Oct; 693(1-3):15-24. PubMed ID: 22963705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.