BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 23689702)

  • 21. Decellularized vein as a potential scaffold for vascular tissue engineering.
    Schaner PJ; Martin ND; Tulenko TN; Shapiro IM; Tarola NA; Leichter RF; Carabasi RA; Dimuzio PJ
    J Vasc Surg; 2004 Jul; 40(1):146-53. PubMed ID: 15218475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current status on vascular substitutes.
    Lejay A; Vento V; Kuntz S; Steinmetz L; Georg Y; Thaveau F; Heim F; Chakfé N
    J Cardiovasc Surg (Torino); 2020 Oct; 61(5):538-543. PubMed ID: 32885928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of graft configuration on 30-day failure of infrapopliteal bypasses.
    Nguyen BN; Neville RF; Abugideiri M; Amdur R; Sidawy AN
    J Vasc Surg; 2014 Apr; 59(4):1003-8. PubMed ID: 24360587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts.
    Ding H; Hou X; Gao Z; Guo Y; Liao B; Wan J
    Adv Healthc Mater; 2024 Jun; 13(16):e2304432. PubMed ID: 38462702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor.
    Zhou M; Liu Z; Wei Z; Liu C; Qiao T; Ran F; Bai Y; Jiang X; Ding Y
    Artif Organs; 2009 Mar; 33(3):230-9. PubMed ID: 19245522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current biofabrication methods for vascular tissue engineering and an introduction to biological textiles.
    Kawecki F; L'Heureux N
    Biofabrication; 2023 Mar; 15(2):. PubMed ID: 36848675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and in vivo validation of tissue-engineered, small-diameter vascular grafts from decellularized aortae of fetal pigs and canine vascular endothelial cells.
    Ma X; He Z; Li L; Liu G; Li Q; Yang D; Zhang Y; Li N
    J Cardiothorac Surg; 2017 Nov; 12(1):101. PubMed ID: 29178903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vascular grafts and valves that animate, made from decellularized biologically-engineered tissue tubes.
    Syedain ZH; Maciver R; Tranquillo RT
    J Cardiovasc Surg (Torino); 2020 Oct; 61(5):577-585. PubMed ID: 32964902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-free collagen-based scaffolds used for making blood vessels in cardiovascular surgery.
    Akhmedov ShD; Afanas'ev SA; Egorova MV; Andreev SL; Ivanov AV; Rogovskaia YV; Usov VY; Shvedov AN; Steinhoff G
    Angiol Sosud Khir; 2012; 18(2):7-12. PubMed ID: 22929664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scaffolds in tissue engineering of blood vessels.
    Pankajakshan D; Agrawal DK
    Can J Physiol Pharmacol; 2010 Sep; 88(9):855-73. PubMed ID: 20921972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications.
    Chandra P; Atala A
    Clin Sci (Lond); 2019 May; 133(9):1115-1135. PubMed ID: 31088895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft.
    Tara S; Kurobe H; Maxfield MW; Rocco KA; Yi T; Naito Y; Breuer CK; Shinoka T
    J Vasc Surg; 2015 Sep; 62(3):734-43. PubMed ID: 24745941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compositions Including Synthetic and Natural Blends for Integration and Structural Integrity: Engineered for Different Vascular Graft Applications.
    Shojaee M; Bashur CA
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28371505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymeric materials for tissue engineering of arterial substitutes.
    Ravi S; Qu Z; Chaikof EL
    Vascular; 2009; 17 Suppl 1(Suppl 1):S45-54. PubMed ID: 19426609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status.
    Drews JD; Miyachi H; Shinoka T
    Trends Cardiovasc Med; 2017 Nov; 27(8):521-531. PubMed ID: 28754230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
    Scherner M; Reutter S; Klemm D; Sterner-Kock A; Guschlbauer M; Richter T; Langebartels G; Madershahian N; Wahlers T; Wippermann J
    J Surg Res; 2014 Jun; 189(2):340-7. PubMed ID: 24726059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Allogeneic human tissue-engineered blood vessel.
    Quint C; Arief M; Muto A; Dardik A; Niklason LE
    J Vasc Surg; 2012 Mar; 55(3):790-8. PubMed ID: 22056286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue engineering vascular grafts a fortiori: looking back and going forward.
    G N; Tan A; Gundogan B; Farhatnia Y; Nayyer L; Mahdibeiraghdar S; Rajadas J; De Coppi P; Davies AH; Seifalian AM
    Expert Opin Biol Ther; 2015 Feb; 15(2):231-44. PubMed ID: 25427995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model.
    Xu S; Lu F; Cheng L; Li C; Zhou X; Wu Y; Chen H; Zhang K; Wang L; Xia J; Yan G; Qi Z
    Biomed Eng Online; 2017 May; 16(1):55. PubMed ID: 28494781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growing a living blood vessel: insights for the second hundred years.
    Brewster LP; Bufallino D; Ucuzian A; Greisler HP
    Biomaterials; 2007 Dec; 28(34):5028-32. PubMed ID: 17706765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.