These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23689717)

  • 1. Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans.
    Hayes BM; Bleackley MR; Wiltshire JL; Anderson MA; Traven A; van der Weerden NL
    Antimicrob Agents Chemother; 2013 Aug; 57(8):3667-75. PubMed ID: 23689717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between the Candida albicans high-osmolarity glycerol (HOG) pathway and the response to human beta-defensins 2 and 3.
    Argimón S; Fanning S; Blankenship JR; Mitchell AP
    Eukaryot Cell; 2011 Feb; 10(2):272-5. PubMed ID: 21131433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata.
    Dracatos PM; van der Weerden NL; Carroll KT; Johnson ED; Plummer KM; Anderson MA
    Mol Plant Pathol; 2014 Jan; 15(1):67-79. PubMed ID: 24015961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant.
    Bleackley MR; Payne JA; Hayes BM; Durek T; Craik DJ; Shafee TM; Poon IK; Hulett MD; van der Weerden NL; Anderson MA
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6302-12. PubMed ID: 27503651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.
    van der Weerden NL; Hancock RE; Anderson MA
    J Biol Chem; 2010 Nov; 285(48):37513-20. PubMed ID: 20861017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi.
    Dracatos PM; Payne J; Di Pietro A; Anderson MA; Plummer KM
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27598152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungicidal Potency and Mechanisms of θ-Defensins against Multidrug-Resistant Candida Species.
    Basso V; Garcia A; Tran DQ; Schaal JB; Tran P; Ngole D; Aqeel Y; Tongaonkar P; Ouellette AJ; Selsted ME
    Antimicrob Agents Chemother; 2018 Jun; 62(6):. PubMed ID: 29610196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antifungal activity of RsAFP2, a plant defensin from raphanus sativus, involves the induction of reactive oxygen species in Candida albicans.
    Aerts AM; François IE; Meert EM; Li QT; Cammue BP; Thevissen K
    J Mol Microbiol Biotechnol; 2007; 13(4):243-7. PubMed ID: 17827975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding.
    Ochiai A; Ogawa K; Fukuda M; Suzuki M; Ito K; Tanaka T; Sagehashi Y; Taniguchi M
    J Biosci Bioeng; 2020 Jul; 130(1):6-13. PubMed ID: 32192842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-Genome Approach to Understanding the Mechanism of Action of a Histatin 5-Derived Peptide.
    Bullock CB; McNabb DS; Pinto I
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31843998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms.
    Vriens K; Cools TL; Harvey PJ; Craik DJ; Braem A; Vleugels J; De Coninck B; Cammue BP; Thevissen K
    Peptides; 2016 Jan; 75():71-9. PubMed ID: 26592804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans.
    Vieira ME; Vasconcelos IM; Machado OL; Gomes VM; Carvalho Ade O
    Acta Biochim Biophys Sin (Shanghai); 2015 Sep; 47(9):716-29. PubMed ID: 26245301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Thioether-Stabilized d-Proline-l-Proline-Induced β-Hairpin Peptide of Defensin Segment Increases Its Anti-Candida albicans Ability.
    Zhao B; Yang D; Wong JH; Wang J; Yin C; Zhu Y; Fan S; Ng TB; Xia J; Li Z
    Chembiochem; 2016 Aug; 17(15):1416-20. PubMed ID: 27194395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells.
    Mello EO; Ribeiro SF; Carvalho AO; Santos IS; Da Cunha M; Santa-Catarina C; Gomes VM
    Curr Microbiol; 2011 Apr; 62(4):1209-17. PubMed ID: 21170711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures.
    Vriens K; Cools TL; Harvey PJ; Craik DJ; Spincemaille P; Cassiman D; Braem A; Vleugels J; Nibbering PH; Drijfhout JW; De Coninck B; Cammue BP; Thevissen K
    PLoS One; 2015; 10(8):e0132701. PubMed ID: 26248029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Activity between Two Antifungal Proteins, the Plant Defensin NaD1 and the Bovine Pancreatic Trypsin Inhibitor.
    Bleackley MR; Dawson CS; McKenna JA; Quimbar P; Hayes BME; van der Weerden NL; Anderson MA
    mSphere; 2017; 2(5):. PubMed ID: 29062897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice Defensin OsAFP1 is a New Drug Candidate against Human Pathogenic Fungi.
    Ochiai A; Ogawa K; Fukuda M; Ohori M; Kanaoka T; Tanaka T; Taniguchi M; Sagehashi Y
    Sci Rep; 2018 Jul; 8(1):11434. PubMed ID: 30061724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver nanoparticles induce reactive oxygen species-mediated cell cycle delay and synergistic cytotoxicity with 3-bromopyruvate in
    Lee B; Lee MJ; Yun SJ; Kim K; Choi IH; Park S
    Int J Nanomedicine; 2019; 14():4801-4816. PubMed ID: 31308659
    [No Abstract]   [Full Text] [Related]  

  • 19. Dimerization of plant defensin NaD1 enhances its antifungal activity.
    Lay FT; Mills GD; Poon IK; Cowieson NP; Kirby N; Baxter AA; van der Weerden NL; Dogovski C; Perugini MA; Anderson MA; Kvansakul M; Hulett MD
    J Biol Chem; 2012 Jun; 287(24):19961-72. PubMed ID: 22511788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of berberine hydrochloride against Candida albicans and the role of the HOG-MAPK pathway.
    Huang X; Yi Y; Yong J; Sun J; Song Z; Li D; Li Y
    J Antibiot (Tokyo); 2021 Nov; 74(11):807-816. PubMed ID: 34408288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.