These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23689734)

  • 21. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD
    Lim K; Lee YS; Simoska O; Dong F; Sima M; Stewart RJ; Minteer SD
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10942-10951. PubMed ID: 33646753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production.
    Lu Y; Zhao H; Zhang C; Lai Q; Wu X; Xing XH
    Biotechnol Lett; 2009 Oct; 31(10):1525-30. PubMed ID: 19533026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion.
    Lin Y; Zhu N; Yu P; Su L; Mao L
    Anal Chem; 2009 Mar; 81(6):2067-74. PubMed ID: 19281258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.
    Weckbecker A; Hummel W
    Biotechnol Lett; 2004 Nov; 26(22):1739-44. PubMed ID: 15604828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alteration of hydrogen metabolism of ldh-deleted Enterobacter aerogenes by overexpression of NAD+-dependent formate dehydrogenase.
    Lu Y; Zhao H; Zhang C; Lai Q; Wu X; Xing XH
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):255-62. PubMed ID: 19830418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic model for prediction of formate dehydrogenase kinetics under industrially relevant conditions.
    Schmidt T; Michalik C; Zavrel M; Spiess A; Marquardt W; Ansorge-Schumacher MB
    Biotechnol Prog; 2010; 26(1):73-8. PubMed ID: 19830796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein engineering of formate dehydrogenase.
    Tishkov VI; Popov VO
    Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes.
    Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B
    Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of disulphide bridges on the activity and stability of the formate dehydrogenase from Candida methylica.
    Karagüler NG; Sessions RB; Clarke AR
    Biotechnol Lett; 2007 Sep; 29(9):1375-80. PubMed ID: 17479216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioinspired genetic engineering of supramolecular assembled formate dehydrogenase with enhanced biocatalysis activities.
    Jiang W; Yang R; Lin P; Hong W; Fang B
    J Biotechnol; 2019 Feb; 292():50-56. PubMed ID: 30690097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Two ways of formate oxidation in methylotrophic bacteria].
    Rodionov IuV; Zakharova EV
    Biokhimiia; 1980 May; 45(5):854-63. PubMed ID: 6246983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases.
    Kim YH; Campbell E; Yu J; Minteer SD; Banta S
    Angew Chem Int Ed Engl; 2013 Jan; 52(5):1437-40. PubMed ID: 23239008
    [No Abstract]   [Full Text] [Related]  

  • 34. ZnO Materials as Effective Anodes for the Photoelectrochemical Regeneration of Enzymatically Active NAD
    Ottone C; Pugliese D; Laurenti M; Hernández S; Cauda V; Grez P; Wilson L
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10719-10727. PubMed ID: 33645209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations.
    Alekseeva AA; Serenko AA; Kargov IS; Savin SS; Kleymenov SY; Tishkov VI
    Protein Eng Des Sel; 2012 Nov; 25(11):781-8. PubMed ID: 23100543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of liposome-coupled NADH and evaluation of its affinity toward formate dehydrogenase based on deactivation kinetics of the enzyme.
    Yoshimoto M; Kunihiro N; Tsubomura N; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Sep; 109():40-4. PubMed ID: 23603041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advantages of formate dehydrogenase reaction for efficient NAD
    Artiukhov AV; Pometun AA; Zubanova SA; Tishkov VI; Bunik VI
    Anal Biochem; 2020 Aug; 603():113797. PubMed ID: 32562604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formate dehydrogenase activity in methanol-utilizing yeasts.
    Illeová V; Certík M; Stefuca V; Báles V
    Microbios; 1993; 76(306):29-33. PubMed ID: 8264430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli].
    Sun Y; Zhang R; Xu Y
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1629-33. PubMed ID: 19271538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation.
    Pinczewska A; Sosna M; Bloodworth S; Kilburn JD; Bartlett PN
    J Am Chem Soc; 2012 Oct; 134(43):18022-33. PubMed ID: 23046387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.