BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23689846)

  • 1. Toward high performance graphene fibers.
    Chen L; He Y; Chai S; Qiang H; Chen F; Fu Q
    Nanoscale; 2013 Jul; 5(13):5809-15. PubMed ID: 23689846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene in macroscopic order: liquid crystals and wet-spun fibers.
    Xu Z; Gao C
    Acc Chem Res; 2014 Apr; 47(4):1267-76. PubMed ID: 24555686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers.
    Cong HP; Ren XC; Wang P; Yu SH
    Sci Rep; 2012; 2():613. PubMed ID: 22937222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable writing of graphene oxide/reduced graphene oxide fibers for sensible networks with in situ welded junctions.
    Cao J; Zhang Y; Men C; Sun Y; Wang Z; Zhang X; Li Q
    ACS Nano; 2014 May; 8(5):4325-33. PubMed ID: 24708466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry spinning approach to continuous graphene fibers with high toughness.
    Tian Q; Xu Z; Liu Y; Fang B; Peng L; Xi J; Li Z; Gao C
    Nanoscale; 2017 Aug; 9(34):12335-12342. PubMed ID: 28825752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.
    Xu Z; Zhang Y; Li P; Gao C
    ACS Nano; 2012 Aug; 6(8):7103-13. PubMed ID: 22799441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling.
    Cruz-Silva R; Morelos-Gomez A; Kim HI; Jang HK; Tristan F; Vega-Diaz S; Rajukumar LP; ElĂ­as AL; Perea-Lopez N; Suhr J; Endo M; Terrones M
    ACS Nano; 2014 Jun; 8(6):5959-67. PubMed ID: 24796818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Speed Blow Spinning of Neat Graphene Fibrous Materials.
    Liu S; Wang Y; Ming X; Xu Z; Liu Y; Gao C
    Nano Lett; 2021 Jun; 21(12):5116-5125. PubMed ID: 34126742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet-spinning of continuous montmorillonite-graphene fibers for fire-resistant lightweight conductors.
    Fang B; Peng L; Xu Z; Gao C
    ACS Nano; 2015 May; 9(5):5214-22. PubMed ID: 25893965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers.
    Zhao Y; Jiang C; Hu C; Dong Z; Xue J; Meng Y; Zheng N; Chen P; Qu L
    ACS Nano; 2013 Mar; 7(3):2406-12. PubMed ID: 23414527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene nanoribbons as an advanced precursor for making carbon fiber.
    Xiang C; Behabtu N; Liu Y; Chae HG; Young CC; Genorio B; Tsentalovich DE; Zhang C; Kosynkin DV; Lomeda JR; Hwang CC; Kumar S; Pasquali M; Tour JM
    ACS Nano; 2013 Feb; 7(2):1628-37. PubMed ID: 23339339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macroscopic, flexible, high-performance graphene ribbons.
    Sun J; Li Y; Peng Q; Hou S; Zou D; Shang Y; Li Y; Li P; Du Q; Wang Z; Xia Y; Xia L; Li X; Cao A
    ACS Nano; 2013 Nov; 7(11):10225-32. PubMed ID: 24164512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled free-standing graphene oxide fibers.
    Tian Z; Xu C; Li J; Zhu G; Shi Z; Lin Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1489-93. PubMed ID: 23369286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets.
    Lin X; Shen X; Zheng Q; Yousefi N; Ye L; Mai YW; Kim JK
    ACS Nano; 2012 Dec; 6(12):10708-19. PubMed ID: 23171230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently bridging graphene edges for improving mechanical and electrical properties of fibers.
    Ding L; Xu T; Zhang J; Ji J; Song Z; Zhang Y; Xu Y; Liu T; Liu Y; Zhang Z; Gong W; Wang Y; Shi Z; Ma R; Geng J; Ngo HT; Geng F; Liu Z
    Nat Commun; 2024 Jun; 15(1):4880. PubMed ID: 38849347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites.
    Ha HW; Choudhury A; Kamal T; Kim DH; Park SY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers.
    Kou L; Gao C
    Nanoscale; 2013 May; 5(10):4370-8. PubMed ID: 23571664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.
    Cheng H; Huang Y; Shi G; Jiang L; Qu L
    Acc Chem Res; 2017 Jul; 50(7):1663-1671. PubMed ID: 28657710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of graphene sheets into 3D macroscopic structures.
    Yin S; Niu Z; Chen X
    Small; 2012 Aug; 8(16):2458-63. PubMed ID: 22619180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.