These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23689929)

  • 21. High-resolution prediction of leaf onset date in Japan in the 21st century under the IPCC A1B scenario.
    Hadano M; Nasahara KN; Motohka T; Noda HM; Murakami K; Hosaka M
    Ecol Evol; 2013 Jun; 3(6):1798-807. PubMed ID: 23789086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.
    Euskirchen ES; Carman TB; McGuire AD
    Glob Chang Biol; 2014 Mar; 20(3):963-78. PubMed ID: 24105949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant phenology and global climate change: Current progresses and challenges.
    Piao S; Liu Q; Chen A; Janssens IA; Fu Y; Dai J; Liu L; Lian X; Shen M; Zhu X
    Glob Chang Biol; 2019 Jun; 25(6):1922-1940. PubMed ID: 30884039
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifts in the flowering phenology of the northern Great Plains: patterns over 100 years.
    Dunnell KL; Travers SE
    Am J Bot; 2011 Jun; 98(6):935-45. PubMed ID: 21613073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].
    Dai EF; Zhou H; Wu Z; Wang XF; Xi WM; Zhu JJ
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3059-3069. PubMed ID: 29726129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaf-traits and growth allometry explain competition and differences in response to climatic change in a temperate forest landscape: a simulation study.
    Yu M; Gao Q
    Ann Bot; 2011 Oct; 108(5):885-94. PubMed ID: 21835816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes of flowering phenology and flower size in rosaceous plants from a biodiversity hotspot in the past century.
    Yu Q; Jia DR; Tian B; Yang YP; Duan YW
    Sci Rep; 2016 Jun; 6():28302. PubMed ID: 27312838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.
    Tao F; Zhang Z; Shi W; Liu Y; Xiao D; Zhang S; Zhu Z; Wang M; Liu F
    Glob Chang Biol; 2013 Oct; 19(10):3200-9. PubMed ID: 23661287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Impacts of future climate change on spring phenology stages of rubber tree in Hainan, China].
    Li N; Bai R; Wu L; Li W; Chen M; Chen X; Fan CH; Yang GS
    Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1241-1249. PubMed ID: 32530199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly individualistic rates of plant phenological advance associated with arctic sea ice dynamics.
    Post E; Kerby J; Pedersen C; Steltzer H
    Biol Lett; 2016 Dec; 12(12):. PubMed ID: 27974492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of climate change on the economic output of the Longjing-43 tea tree, 1972-2013.
    Lou W; Sun S; Wu L; Sun K
    Int J Biometeorol; 2015 May; 59(5):593-603. PubMed ID: 25056127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone.
    Rice KE; Montgomery RA; Stefanski A; Rich RL; Reich PB
    Am J Bot; 2018 May; 105(5):851-861. PubMed ID: 29874393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant phenological synchrony increases under rapid within-spring warming.
    Wang C; Tang Y; Chen J
    Sci Rep; 2016 May; 6():25460. PubMed ID: 27145698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes.
    Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R
    Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new tool for exploring climate change induced range shifts of conifer species in China.
    Kou X; Li Q; Beierkuhnlein C; Zhao Y; Liu S
    PLoS One; 2014; 9(9):e98643. PubMed ID: 25268604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Future ozone-related acute excess mortality under climate and population change scenarios in China: A modeling study.
    Chen K; Fiore AM; Chen R; Jiang L; Jones B; Schneider A; Peters A; Bi J; Kan H; Kinney PL
    PLoS Med; 2018 Jul; 15(7):e1002598. PubMed ID: 29969446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grapevine phenology and climate change in Georgia.
    Cola G; Failla O; Maghradze D; Megrelidze L; Mariani L
    Int J Biometeorol; 2017 Apr; 61(4):761-773. PubMed ID: 27714505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].
    Luo X; Wang YL; Zhang JQ
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.