These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23689955)

  • 1. Controlled growth of concave gold nanobars with high surface-enhanced Raman-scattering and excellent catalytic activities.
    Zhang LF; Zhang CY
    Nanoscale; 2013 Jul; 5(13):5794-800. PubMed ID: 23689955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy.
    Huang J; Zhu Y; Lin M; Wang Q; Zhao L; Yang Y; Yao KX; Han Y
    J Am Chem Soc; 2013 Jun; 135(23):8552-61. PubMed ID: 23675958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties.
    Zhang Q; Moran CH; Xia X; Rycenga M; Li N; Xia Y
    Langmuir; 2012 Jun; 28(24):9047-54. PubMed ID: 22429070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized nanorod assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates.
    Greeneltch NG; Blaber MG; Henry AI; Schatz GC; Van Duyne RP
    Anal Chem; 2013 Feb; 85(4):2297-303. PubMed ID: 23343409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and optical properties of silver nanobars and nanorice.
    Wiley BJ; Chen Y; McLellan JM; Xiong Y; Li ZY; Ginger D; Xia Y
    Nano Lett; 2007 Apr; 7(4):1032-6. PubMed ID: 17343425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering.
    Chen Y; Tian G; Pan K; Tian C; Zhou J; Zhou W; Ren Z; Fu H
    Dalton Trans; 2012 Jan; 41(3):1020-6. PubMed ID: 22083352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Phospholipid Bilayers on Gold Nanorods by Plasmon Resonance Sensing and Surface-Enhanced Raman Scattering.
    Matthews JR; Payne CM; Hafner JH
    Langmuir; 2015 Sep; 31(36):9893-900. PubMed ID: 26302310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering on single-wall carbon nanotubes.
    Kneipp K; Kneipp H; Dresselhaus MS; Lefrant S
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2361-73. PubMed ID: 15482983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement.
    Zhang LF; Zhong SL; Xu AW
    Angew Chem Int Ed Engl; 2013 Jan; 52(2):645-9. PubMed ID: 23192859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold/palladium and silver/palladium colloids as novel metallic substrates for surface-enhanced Raman scattering.
    Pergolese B; Bigotto A; Muniz-Miranda M; Sbrana G
    Appl Spectrosc; 2005 Feb; 59(2):194-9. PubMed ID: 15720760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates.
    Orendorff CJ; Gearheart L; Jana NR; Murphy CJ
    Phys Chem Chem Phys; 2006 Jan; 8(1):165-70. PubMed ID: 16482257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanowires enabling signal-enhanced nanoscale Raman spectroscopy.
    Becker M; Sivakov V; Gösele U; Stelzner T; Andrä G; Reich HJ; Hoffmann S; Michler J; Christiansen SH
    Small; 2008 Apr; 4(4):398-404. PubMed ID: 18383193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods.
    Wu L; Wang Z; Zong S; Huang Z; Zhang P; Cui Y
    Biosens Bioelectron; 2012; 38(1):94-9. PubMed ID: 22647534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods.
    Strickland AD; Batt CA
    Anal Chem; 2009 Apr; 81(8):2895-903. PubMed ID: 19301846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of water-soluble gold nanoparticles and their applications in electrocatalysis and surface-enhanced Raman scattering.
    Qiao Y; Chen H; Lin Y; Huang J
    Langmuir; 2011 Sep; 27(17):11090-7. PubMed ID: 21761928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization and SERS activity of Au-Ag nanorods.
    Philip D; Gopchandran KG; Unni C; Nissamudeen KM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Sep; 70(4):780-4. PubMed ID: 17964213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.