These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23690013)

  • 1. Cultivation of limbal epithelial cells on electrospun poly (lactide-co-glycolide) scaffolds for delivery to the cornea.
    Deshpande P; Ramachandran C; Sangwan VS; Macneil S
    Methods Mol Biol; 2013; 1014():179-85. PubMed ID: 23690013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants.
    Deshpande P; Ramachandran C; Sefat F; Mariappan I; Johnson C; McKean R; Hannah M; Sangwan VS; Claeyssens F; Ryan AJ; MacNeil S
    Biomaterials; 2013 Jul; 34(21):5088-106. PubMed ID: 23591389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal Cells Affect Salivary Epithelial Cell Morphology on PGS/PLGA Core/Shell Nanofibers.
    Sfakis L; Kamaldinov T; Khmaladze A; Hosseini ZF; Nelson DA; Larsen M; Castracane J
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29596382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization.
    Foraida ZI; Kamaldinov T; Nelson DA; Larsen M; Castracane J
    Acta Biomater; 2017 Oct; 62():116-127. PubMed ID: 28801269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using poly(lactide-co-glycolide) electrospun scaffolds to deliver cultured epithelial cells to the cornea.
    Deshpande P; McKean R; Blackwood KA; Senior RA; Ogunbanjo A; Ryan AJ; MacNeil S
    Regen Med; 2010 May; 5(3):395-401. PubMed ID: 20455650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.
    Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo biocompatibility of PLGA-polyhexylthiophene nanofiber scaffolds in a rat model.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Res Int; 2013; 2013():390518. PubMed ID: 23971031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-derived feeder fibroblasts for the culture of epithelial cells for clinical use.
    O'Callaghan AR; Morgan L; Daniels JT; Lewis MP
    Regen Med; 2016 Sep; 11(6):529-43. PubMed ID: 27513189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications.
    Arabpour Z; Baradaran-Rafii A; Bakhshaiesh NL; Ai J; Ebrahimi-Barough S; Esmaeili Malekabadi H; Nazeri N; Vaez A; Salehi M; Sefat F; Ostad SN
    J Biomed Mater Res A; 2019 Oct; 107(10):2340-2349. PubMed ID: 31161710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.
    Lao L; Wang Y; Zhu Y; Zhang Y; Gao C
    J Mater Sci Mater Med; 2011 Aug; 22(8):1873-84. PubMed ID: 21681656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.
    Parizek M; Douglas TE; Novotna K; Kromka A; Brady MA; Renzing A; Voss E; Jarosova M; Palatinus L; Tesarek P; Ryparova P; Lisa V; dos Santos AM; Warnke PH; Bacakova L
    Int J Nanomedicine; 2012; 7():1931-51. PubMed ID: 22619532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering.
    Kim J; Jeong SY; Ju YM; Yoo JJ; Smith TL; Khang G; Lee SJ; Atala A
    Biomed Mater; 2013 Feb; 8(1):014107. PubMed ID: 23353783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3T3 fibroblast feeder layer.
    Grueterich M; Espana EM; Tseng SC
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4230-6. PubMed ID: 14507866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing.
    Rogers CM; Morris GE; Gould TW; Bail R; Toumpaniari S; Harrington H; Dixon JE; Shakesheff KM; Segal J; Rose FR
    Biofabrication; 2014 Sep; 6(3):035003. PubMed ID: 24722371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of matrix nanostructure on the functionality of carbodiimide cross-linked amniotic membranes as limbal epithelial cell scaffolds.
    Lai JY; Lue SJ; Cheng HY; Ma DH
    J Biomed Nanotechnol; 2013 Dec; 9(12):2048-62. PubMed ID: 24266260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds.
    Shen H; Hu X; Yang F; Bei J; Wang S
    Biomaterials; 2011 May; 32(13):3404-12. PubMed ID: 21296407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Deng M; Lv Q; Jiang T; Khan YM; Nair LS; Laurencin CT
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2187-96. PubMed ID: 22915492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation.
    Cheng S; Jin Y; Wang N; Cao F; Zhang W; Bai W; Zheng W; Jiang X
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28514016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.