These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 23690035)

  • 1. In vitro evolution of glutathione S-transferase using a plasmid display system based on the GAL4 DNA-binding domain.
    Choi YS; Yoo YJ
    Biotechnol Lett; 2013 Sep; 35(9):1455-60. PubMed ID: 23690035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism-based phage display selection of active-site mutants of human glutathione transferase A1-1 catalyzing SNAr reactions.
    Hansson LO; Widersten M; Mannervik B
    Biochemistry; 1997 Sep; 36(37):11252-60. PubMed ID: 9287168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a plasmid display system using GAL4 DNA binding domain for the in vitro screening of functional proteins.
    Choi YS; Pack SP; Yoo YJ
    Biotechnol Lett; 2005 Nov; 27(21):1707-11. PubMed ID: 16247679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic and structural contributions for glutathione-binding residues in a Delta class glutathione S-transferase.
    Winayanuwattikun P; Ketterman AJ
    Biochem J; 2004 Sep; 382(Pt 2):751-7. PubMed ID: 15182230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members.
    Kurtovic S; Modén O; Shokeer A; Mannervik B
    J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the two conserved tryptophan residues to the catalytic and structural properties of Proteus mirabilis glutathione S-transferase B1-1.
    Allocati N; Masulli M; Pietracupa M; Favaloro B; Federici L; Di Ilio C
    Biochem J; 2005 Jan; 385(Pt 1):37-43. PubMed ID: 15320869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of selenocysteine-containing glutathione S-transferase in Escherichia coli.
    Jiang Z; Arnér ES; Mu Y; Johansson L; Shi J; Zhao S; Liu S; Wang R; Zhang T; Yan G; Liu J; Shen J; Luo G
    Biochem Biophys Res Commun; 2004 Aug; 321(1):94-101. PubMed ID: 15358220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariate-activity mining for molecular quasi-species in a glutathione transferase mutant library.
    Kurtovic S; Runarsdottir A; Emrén LO; Larsson AK; Mannervik B
    Protein Eng Des Sel; 2007 May; 20(5):243-56. PubMed ID: 17468114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA display of biologically active proteins for in vitro protein selection.
    Yonezawa M; Doi N; Higashinakagawa T; Yanagawa H
    J Biochem; 2004 Mar; 135(3):285-8. PubMed ID: 15113826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design and application of an engineered glutathione transferase for the development of an optical biosensor for pesticides determination.
    Chronopoulou EG; Vlachakis D; Papageorgiou AC; Ataya FS; Labrou NE
    Biochim Biophys Acta Gen Subj; 2019 Mar; 1863(3):565-576. PubMed ID: 30590099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione transferases with novel active sites isolated by phage display from a library of random mutants.
    Widersten M; Mannervik B
    J Mol Biol; 1995 Jul; 250(2):115-22. PubMed ID: 7608963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity relationships and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105.
    Johansson AS; Stenberg G; Widersten M; Mannervik B
    J Mol Biol; 1998 May; 278(3):687-98. PubMed ID: 9600848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering thermal stability of L-asparaginase by in vitro directed evolution.
    Kotzia GA; Labrou NE
    FEBS J; 2009 Mar; 276(6):1750-61. PubMed ID: 19220855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural roles of a conserved small hydrophobic core in the active site and an ionic bridge in domain I of Delta class glutathione S-transferase.
    Vararattanavech A; Prommeenate P; Ketterman AJ
    Biochem J; 2006 Jan; 393(Pt 1):89-95. PubMed ID: 16153184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis.
    Zeng QY; Wang XR
    FEBS Lett; 2005 May; 579(12):2657-62. PubMed ID: 15862305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of emerging quasi-species in directed enzyme evolution.
    Kurtovic S; Mannervik B
    Biochemistry; 2009 Oct; 48(40):9330-9. PubMed ID: 19746988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display: a novel tool for the directed evolution of enzymes.
    Skirgaila R; Pudzaitis V; Paliksa S; Vaitkevicius M; Janulaitis A
    Protein Eng Des Sel; 2013 Jul; 26(7):453-61. PubMed ID: 23667164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionarily conserved structural motifs in bacterial GST (glutathione S-transferase) are involved in protein folding and stability.
    Allocati N; Masulli M; Pietracupa M; Federici L; Di Ilio C
    Biochem J; 2006 Feb; 394(Pt 1):11-7. PubMed ID: 16248855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis.
    Zhang ZG; Yi ZL; Pei XQ; Wu ZL
    Bioresour Technol; 2010 Dec; 101(23):9272-8. PubMed ID: 20691586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the C-terminal domain of Burkholderia sp. strain LB400 BphK reveals a conserved motif that affects catalytic activity.
    Gilmartin N; Ryan D; Dowling DN
    FEMS Microbiol Lett; 2005 Aug; 249(1):23-30. PubMed ID: 16006062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.