These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23690041)
21. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013 [TBL] [Abstract][Full Text] [Related]
22. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. Xu T; Li Y; Zeng X; Yang X; Yang Y; Yuan S; Hu X; Zeng J; Wang Z; Liu Q; Liu Y; Liao H; Tong C; Liu X; Zhu Y J Sci Food Agric; 2017 Mar; 97(4):1149-1157. PubMed ID: 27293085 [TBL] [Abstract][Full Text] [Related]
23. Caripyrin, a new inhibitor of infection-related morphogenesis in the rice blast fungus Magnaporthe oryzae. Rieger PH; Liermann JC; Opatz T; Anke H; Thines E J Antibiot (Tokyo); 2010 Jun; 63(6):285-9. PubMed ID: 20379215 [TBL] [Abstract][Full Text] [Related]
24. Antagonistic activity of a novel antifungalmycin N2 from Streptomyces sp. N2 and its biocontrol efficacy against Rhizoctonia solani. Wu ZM; Yang Y; Li KT FEMS Microbiol Lett; 2019 Feb; 366(3):. PubMed ID: 30689866 [TBL] [Abstract][Full Text] [Related]
25. Identification and characterization of rhizosphere fungal strain MF-91 antagonistic to rice blast and sheath blight pathogens. Wang YL; Liu SY; Mao XQ; Zhang Z; Jiang H; Chai RY; Qiu HP; Wang JY; Du XF; Li B; Sun GC J Appl Microbiol; 2013 May; 114(5):1480-90. PubMed ID: 23360472 [TBL] [Abstract][Full Text] [Related]
26. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. Lu JP; Liu TB; Lin FC FEMS Microbiol Lett; 2005 Apr; 245(1):131-7. PubMed ID: 15796990 [TBL] [Abstract][Full Text] [Related]
27. Antifungal Action of Antifungalmycin N2 Against Rhizoctonia solani by Disrupting Cell Membrane and Inhibiting Succinate Dehydrogenase. Zhang SW; Wu ZM; Yang Y; Li KT Curr Microbiol; 2020 Feb; 77(2):254-260. PubMed ID: 31828379 [TBL] [Abstract][Full Text] [Related]
28. Development of new fungicides against Magnaporthe grisea: synthesis and biological activity of pyrazolo[3,4-d][1,3]thiazine, pyrazolo[1,5-c][1,3,5]thiadiazine, and pyrazolo[3,4-d]pyrimidine derivatives. Vicentini CB; Forlani G; Manfrini M; Romagnoli C; Mares D J Agric Food Chem; 2002 Aug; 50(17):4839-45. PubMed ID: 12166969 [TBL] [Abstract][Full Text] [Related]
29. Isolation of a new broad spectrum antifungal polyene from Streptomyces sp. MTCC 5680. Vartak A; Mutalik V; Parab RR; Shanbhag P; Bhave S; Mishra PD; Mahajan GB Lett Appl Microbiol; 2014 Jun; 58(6):591-6. PubMed ID: 24517845 [TBL] [Abstract][Full Text] [Related]
30. Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Moreno AB; Martínez Del Pozo A; San Segundo B Appl Microbiol Biotechnol; 2006 Oct; 72(5):883-95. PubMed ID: 16557374 [TBL] [Abstract][Full Text] [Related]
31. Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108. Seco EM; Cuesta T; Fotso S; Laatsch H; Malpartida F Chem Biol; 2005 May; 12(5):535-43. PubMed ID: 15911374 [TBL] [Abstract][Full Text] [Related]
32. Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease. Tani H; Koshino H; Sakuno E; Nakajima H J Nat Prod; 2005 Dec; 68(12):1768-72. PubMed ID: 16378371 [TBL] [Abstract][Full Text] [Related]
33. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus. Xue C; Tian L; Xu M; Deng Z; Lin W J Antibiot (Tokyo); 2008 Nov; 61(11):668-74. PubMed ID: 19168981 [TBL] [Abstract][Full Text] [Related]
34. Impact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides. Avila-Adame C; Köller W Pest Manag Sci; 2003 Mar; 59(3):303-9. PubMed ID: 12639047 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid. Yara A; Yaeno T; Montillet JL; Hasegawa M; Seo S; Kusumi K; Iba K Biochem Biophys Res Commun; 2008 May; 370(2):344-7. PubMed ID: 18373976 [TBL] [Abstract][Full Text] [Related]
36. Discovery of New Triterpenoid Saponins Isolated from Ngo MT; Han JW; Yoon S; Bae S; Kim SY; Kim H; Choi GJ J Agric Food Chem; 2019 Jul; 67(27):7706-7715. PubMed ID: 31246022 [TBL] [Abstract][Full Text] [Related]
37. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Park G; Xue C; Zheng L; Lam S; Xu JR Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120 [TBL] [Abstract][Full Text] [Related]
38. Control of human and plant fungal pathogens using pentaene macrolide 32, 33-didehydroroflamycoin. Milisavljevic M; Zivkovic S; Pekmezovic M; Stankovic N; Vojnovic S; Vasiljevic B; Senerovic L J Appl Microbiol; 2015 Jun; 118(6):1426-34. PubMed ID: 25810243 [TBL] [Abstract][Full Text] [Related]
39. A new polyene macrolide antibiotic, machidamycin, produced by Streptomyces sp. K22-0017. Awano Y; Ishii R; Takahashi Y; Tsutsumi H; Watanabe Y; Sonoda M; Hokari R; Iwatsuki M; Inahashi Y J Antibiot (Tokyo); 2024 Aug; 77(8):540-543. PubMed ID: 38750248 [TBL] [Abstract][Full Text] [Related]
40. Naturally produced citral can significantly inhibit normal physiology and induce cytotoxicity on Magnaporthe grisea. Li RY; Wu XM; Yin XH; Long YH; Li M Pestic Biochem Physiol; 2015 Feb; 118():19-25. PubMed ID: 25752425 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]