BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23690044)

  • 1. Development of a chloroplast DNA marker for monitoring of transgene introgression in Brassica napus L.
    Woo HJ; Lim MH; Shin KS; Martins B; Lee BK; Cho HS; Mallory-Smith CA
    Biotechnol Lett; 2013 Sep; 35(9):1533-9. PubMed ID: 23690044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa.
    Scott SE; Wilkinson MJ
    Nat Biotechnol; 1999 Apr; 17(4):390-2. PubMed ID: 10207890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive introgression between Brassica napus (oilseed rape) and B. rapa.
    Hansen LB; Siegismund HR; Jørgensen RB
    Heredity (Edinb); 2003 Sep; 91(3):276-83. PubMed ID: 12939629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz.
    Warwick SI; Simard MJ; Légère A; Beckie HJ; Braun L; Zhu B; Mason P; Séguin-Swartz G; Stewart CN
    Theor Appl Genet; 2003 Aug; 107(3):528-39. PubMed ID: 12721639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.
    Qiao J; Cai M; Yan G; Wang N; Li F; Chen B; Gao G; Xu K; Li J; Wu X
    Plant Biotechnol J; 2016 Jan; 14(1):409-18. PubMed ID: 26031705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel detection system for the genetically modified canola (Brassica rapa) line RT73.
    Akiyama H; Makiyama D; Nakamura K; Sasaki N; Minegishi Y; Mano J; Kitta K; Ozeki Y; Teshima R
    Anal Chem; 2010 Dec; 82(23):9909-16. PubMed ID: 21049930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization between oilseed rape (Brassica napus) and different populations and species of Raphanus.
    Ammitzbøll H; Bagger Jørgensen R
    Environ Biosafety Res; 2006; 5(1):3-13. PubMed ID: 16978570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population.
    Warwick SI; Légère A; Simard MJ; James T
    Mol Ecol; 2008 Mar; 17(5):1387-95. PubMed ID: 17971090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study.
    Légère A
    Pest Manag Sci; 2005 Mar; 61(3):292-300. PubMed ID: 15593291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.
    Haider N; Allainguillaume J; Wilkinson MJ
    Curr Genet; 2009 Apr; 55(2):139-50. PubMed ID: 19198841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers.
    Allender CJ; King GJ
    BMC Plant Biol; 2010 Mar; 10():54. PubMed ID: 20350303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The responses of crop - wild Brassica hybrids to simulated herbivory and interspecific competition: implications for transgene introgression.
    Sutherland JP; Justinova L; Poppy GM
    Environ Biosafety Res; 2006; 5(1):15-25. PubMed ID: 16978571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete chloroplast genome sequence of yellow mustard (Sinapis alba L.) and its phylogenetic relationship to other Brassicaceae species.
    Du X; Zeng T; Feng Q; Hu L; Luo X; Weng Q; He J; Zhu B
    Gene; 2020 Mar; 731():144340. PubMed ID: 31923575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of partial new-typed Brassica napus by introgression of genomic components from B. rapa and B. carinata.
    Li M; Liu J; Wang Y; Yu L; Meng J
    J Genet Genomics; 2007 May; 34(5):460-8. PubMed ID: 17560532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloroplast and nuclear DNA studies in a few members of the Brassica oleracea L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis.
    Panda S; Martín JP; Aguinagalde I
    Theor Appl Genet; 2003 Apr; 106(6):1122-8. PubMed ID: 12671762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FT-IR and NMR study of seed coat dissected from different colored progenies of Brassica napus-Sinapis alba hybrids.
    Jiang J; Shao Y; Li A; Zhang Y; Wei C; Wang Y
    J Sci Food Agric; 2013 Jun; 93(8):1898-902. PubMed ID: 23238899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time polymerase chain reaction (PCR) quantitative detection of Brassica napus using a locked nucleic acid TaqMan probe.
    Schmidt AM; Rott ME
    J Agric Food Chem; 2006 Feb; 54(4):1158-65. PubMed ID: 16478231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of genetically modified canola using multiplex PCR coupled with oligonucleotide microarray hybridization.
    Schmidt AM; Sahota R; Pope DS; Lawrence TS; Belton MP; Rott ME
    J Agric Food Chem; 2008 Aug; 56(16):6791-800. PubMed ID: 18636685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).
    Jeong YM; Chung WH; Mun JH; Kim N; Yu HJ
    Gene; 2014 Nov; 551(1):39-48. PubMed ID: 25151309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic differences in seed filling between yellow-seeded progeny of Brassica napus-Sinapis alba (Brassicaceae) and black-seeded parent B. napus.
    Jiang J; Wang J; Li A; Zhang Y; Sokolov V; Wang Y
    Genetika; 2012 Apr; 48(4):480-7. PubMed ID: 22730767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.