These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 23690279)
1. On the controversy about the sharpness of human cochlear tuning. Lopez-Poveda EA; Eustaquio-Martin A J Assoc Res Otolaryngol; 2013 Oct; 14(5):673-86. PubMed ID: 23690279 [TBL] [Abstract][Full Text] [Related]
2. Isoresponse versus isoinput estimates of cochlear filter tuning. Eustaquio-Martín A; Lopez-Poveda EA J Assoc Res Otolaryngol; 2011 Jun; 12(3):281-99. PubMed ID: 21104288 [TBL] [Abstract][Full Text] [Related]
3. Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Oxenham AJ; Shera CA J Assoc Res Otolaryngol; 2003 Dec; 4(4):541-54. PubMed ID: 14716510 [TBL] [Abstract][Full Text] [Related]
4. Otoacoustic estimation of cochlear tuning: validation in the chinchilla. Shera CA; Guinan JJ; Oxenham AJ J Assoc Res Otolaryngol; 2010 Sep; 11(3):343-65. PubMed ID: 20440634 [TBL] [Abstract][Full Text] [Related]
5. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Raufer S; Verhulst S Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947 [TBL] [Abstract][Full Text] [Related]
6. Auditory filter shapes derived from forward and simultaneous masking at low frequencies: Implications for human cochlear tuning. Leschke J; Rodriguez Orellana G; Shera CA; Oxenham AJ Hear Res; 2022 Jul; 420():108500. PubMed ID: 35405591 [TBL] [Abstract][Full Text] [Related]
8. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans. Sumner CJ; Wells TT; Bergevin C; Sollini J; Kreft HA; Palmer AR; Oxenham AJ; Shera CA Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11322-11326. PubMed ID: 30322908 [TBL] [Abstract][Full Text] [Related]
9. Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels. Sisto R; Moleti A J Acoust Soc Am; 2007 Oct; 122(4):2183-90. PubMed ID: 17902854 [TBL] [Abstract][Full Text] [Related]
10. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Shera CA; Guinan JJ; Oxenham AJ Proc Natl Acad Sci U S A; 2002 Mar; 99(5):3318-23. PubMed ID: 11867706 [TBL] [Abstract][Full Text] [Related]
11. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response. Horwitz AR; Ahlstrom JB; Dubno JR Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. Verhulst S; Dau T; Shera CA J Acoust Soc Am; 2012 Dec; 132(6):3842-8. PubMed ID: 23231114 [TBL] [Abstract][Full Text] [Related]
13. Auditory filter nonlinearity across frequency using simultaneous notched-noise masking. Baker RJ; Rosen S J Acoust Soc Am; 2006 Jan; 119(1):454-62. PubMed ID: 16454300 [TBL] [Abstract][Full Text] [Related]
14. Offset tuning curves generated by simultaneous masking are more finely tuned than those generated by forward masking. Henry KR Hear Res; 1986; 24(2):151-61. PubMed ID: 3771377 [TBL] [Abstract][Full Text] [Related]
15. Effect of contralateral acoustic stimulation on cochlear tuning measured using stimulus frequency and distortion product OAEs. Boothalingam S; Lineton B Int J Audiol; 2012 Dec; 51(12):892-9. PubMed ID: 22934932 [TBL] [Abstract][Full Text] [Related]