These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23690621)

  • 1. Interplay of physics and evolution in the likely origin of protein biochemical function.
    Skolnick J; Gao M
    Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9344-9. PubMed ID: 23690621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of the small number of distinct ligand binding pockets in proteins for drug discovery, evolution and biochemical function.
    Skolnick J; Gao M; Roy A; Srinivasan B; Zhou H
    Bioorg Med Chem Lett; 2015 Mar; 25(6):1163-70. PubMed ID: 25690787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why not consider a spherical protein? Implications of backbone hydrogen bonding for protein structure and function.
    Brylinski M; Gao M; Skolnick J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17044-55. PubMed ID: 21655593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of physics and evolution in dictating protein structure and function.
    Skolnick J; Gao M; Zhou H
    Isr J Chem; 2014 Aug; 54(8-9):1176-1188. PubMed ID: 25484448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive survey of small-molecule binding pockets in proteins.
    Gao M; Skolnick J
    PLoS Comput Biol; 2013 Oct; 9(10):e1003302. PubMed ID: 24204237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.
    Ashford P; Moss DS; Alex A; Yeap SK; Povia A; Nobeli I; Williams MA
    BMC Bioinformatics; 2012 Mar; 13():39. PubMed ID: 22417279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation.
    Gao M; Skolnick J
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3784-9. PubMed ID: 22355140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How special is the biochemical function of native proteins?
    Skolnick J; Gao M; Zhou H
    F1000Res; 2016; 5():. PubMed ID: 26962440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: application to ligand prediction.
    Hoffmann B; Zaslavskiy M; Vert JP; Stoven V
    BMC Bioinformatics; 2010 Feb; 11():99. PubMed ID: 20175916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing patch-based ligand-binding pocket database for predicting function of proteins.
    Sael L; Kihara D
    BMC Bioinformatics; 2012 Mar; 13 Suppl 2(Suppl 2):S7. PubMed ID: 22536870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.
    Sheridan RP; Maiorov VN; Holloway MK; Cornell WD; Gao YD
    J Chem Inf Model; 2010 Nov; 50(11):2029-40. PubMed ID: 20977231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of protein-ligand interactions: the binding of endogenous compounds and of synthetic drugs.
    Gallina AM; Bork P; Bordo D
    J Mol Recognit; 2014 Feb; 27(2):65-72. PubMed ID: 24436123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and analysis of conserved pockets on protein surfaces.
    Cammisa M; Correra A; Andreotti G; Cubellis MV
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S9. PubMed ID: 23815589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. APoc: large-scale identification of similar protein pockets.
    Gao M; Skolnick J
    Bioinformatics; 2013 Mar; 29(5):597-604. PubMed ID: 23335017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons.
    Morris RJ; Najmanovich RJ; Kahraman A; Thornton JM
    Bioinformatics; 2005 May; 21(10):2347-55. PubMed ID: 15728116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin and highly likely completeness of single-domain protein structures.
    Zhang Y; Hubner IA; Arakaki AK; Shakhnovich E; Skolnick J
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2605-10. PubMed ID: 16478803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction, quantification and visualization of protein pockets.
    Zhang X; Bajaj C
    Comput Syst Bioinformatics Conf; 2007; 6():275-86. PubMed ID: 17951831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive identification of "druggable" protein ligand binding sites.
    An J; Totrov M; Abagyan R
    Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.