These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23690747)

  • 21. A periodicity analysis of transmembrane helices.
    Leonov H; Arkin IT
    Bioinformatics; 2005 Jun; 21(11):2604-10. PubMed ID: 15746278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TMDET: web server for detecting transmembrane regions of proteins by using their 3D coordinates.
    Tusnády GE; Dosztányi Z; Simon I
    Bioinformatics; 2005 Apr; 21(7):1276-7. PubMed ID: 15539454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TMRPres2D: high quality visual representation of transmembrane protein models.
    Spyropoulos IC; Liakopoulos TD; Bagos PG; Hamodrakas SJ
    Bioinformatics; 2004 Nov; 20(17):3258-60. PubMed ID: 15201184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transmembrane proteins in the Protein Data Bank: identification and classification.
    Tusnády GE; Dosztányi Z; Simon I
    Bioinformatics; 2004 Nov; 20(17):2964-72. PubMed ID: 15180935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops.
    Lasso G; Antoniw JF; Mullins JG
    Bioinformatics; 2006 Jul; 22(14):e290-7. PubMed ID: 16873484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar.
    Viklund H; Elofsson A
    Bioinformatics; 2008 Aug; 24(15):1662-8. PubMed ID: 18474507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple statistical method for discriminating outer membrane proteins with better accuracy.
    Gromiha MM; Suwa M
    Bioinformatics; 2005 Apr; 21(7):961-8. PubMed ID: 15531602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TMpro web server and web service: transmembrane helix prediction through amino acid property analysis.
    Ganapathiraju M; Jursa CJ; Karimi HA; Klein-Seetharaman J
    Bioinformatics; 2007 Oct; 23(20):2795-6. PubMed ID: 17724062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure prediction of helical transmembrane proteins at two length scales.
    Chen Z; Xu Y
    J Bioinform Comput Biol; 2006 Apr; 4(2):317-33. PubMed ID: 16819786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of correlations in location of hydrophobic and hydrophilic monomers in protein sequences.
    Ziyatdinov AS; Gusev LV; Vasilevskaya VV; Khokhlov AR
    Dokl Biochem Biophys; 2006; 411():361-4. PubMed ID: 17396582
    [No Abstract]   [Full Text] [Related]  

  • 32. To be or not to be: predicting soluble SecAs as membrane proteins.
    Hu HJ; Holley J; He J; Harrison RW; Yang H; Tai PC; Pan Y
    IEEE Trans Nanobioscience; 2007 Jun; 6(2):168-79. PubMed ID: 17695753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An automatic method for predicting transmembrane protein structures using cryo-EM and evolutionary data.
    Fleishman SJ; Harrington S; Friesner RA; Honig B; Ben-Tal N
    Biophys J; 2004 Nov; 87(5):3448-59. PubMed ID: 15339802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple Alignment of protein structures and sequences for VMD.
    Eargle J; Wright D; Luthey-Schulten Z
    Bioinformatics; 2006 Feb; 22(4):504-6. PubMed ID: 16339280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-scale hierarchical structure prediction of helical transmembrane proteins.
    Chen Z; Xu Y
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():203-7. PubMed ID: 16447977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discrimination of single and multiple human transmembrane proteins using kurtosis and morphological analysis.
    Kitsas IK; Hadjileontiadis LJ; Panas SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1351-4. PubMed ID: 19162918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OPM: orientations of proteins in membranes database.
    Lomize MA; Lomize AL; Pogozheva ID; Mosberg HI
    Bioinformatics; 2006 Mar; 22(5):623-5. PubMed ID: 16397007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of protein quaternary structure with support vector machine.
    Zhang SW; Pan Q; Zhang HC; Zhang YL; Wang HY
    Bioinformatics; 2003 Dec; 19(18):2390-6. PubMed ID: 14668222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Support vector machines for predicting membrane protein types by using functional domain composition.
    Cai YD; Zhou GP; Chou KC
    Biophys J; 2003 May; 84(5):3257-63. PubMed ID: 12719255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.