These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23691215)

  • 1. Sensitivity differences in fish offer near-infrared vision as an adaptable evolutionary trait.
    Shcherbakov D; Knörzer A; Espenhahn S; Hilbig R; Haas U; Blum M
    PLoS One; 2013; 8(5):e64429. PubMed ID: 23691215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared orientation of Mozambique tilapia Oreochromis mossambicus.
    Shcherbakov D; Knörzer A; Hilbig R; Haas U; Blum M
    Zoology (Jena); 2012 Aug; 115(4):233-8. PubMed ID: 22770589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual adaptations to different light environments in Amazonian fishes.
    Muntz WR
    Rev Can Biol Exp; 1982 Mar; 41(1):35-46. PubMed ID: 7201662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Retinal adaptations to habitat].
    Ali MA
    Rev Can Biol; 1981 Mar; 40(1):3-17. PubMed ID: 7244315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual prey detection by near-infrared cues in a fish.
    Meuthen D; Rick IP; Thünken T; Baldauf SA
    Naturwissenschaften; 2012 Dec; 99(12):1063-6. PubMed ID: 23086394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative visual function in four piscivorous fishes inhabiting Chesapeake Bay.
    Horodysky AZ; Brill RW; Warrant EJ; Musick JA; Latour RJ
    J Exp Biol; 2010 May; 213(Pt 10):1751-61. PubMed ID: 20435826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae.
    Ma Y; Bao J; Zhang Y; Li Z; Zhou X; Wan C; Huang L; Zhao Y; Han G; Xue T
    Cell; 2019 Apr; 177(2):243-255.e15. PubMed ID: 30827682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultraviolet polarization vision and visually guided behavior in fishes.
    Hawryshyn CW
    Brain Behav Evol; 2010; 75(3):186-94. PubMed ID: 20733294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish larvae show negative phototaxis to near-infrared light.
    Hartmann S; Vogt R; Kunze J; Rauschert A; Kuhnert KD; Wanzenböck J; Lamatsch DK; Witte K
    PLoS One; 2018; 13(11):e0207264. PubMed ID: 30485324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral sensitivities of the seahorses Hippocampus subelongatus and Hippocampus barbouri and the pipefish Stigmatopora argus.
    Mosk V; Thomas N; Hart NS; Partridge JC; Beazley LD; Shand J
    Vis Neurosci; 2007; 24(3):345-54. PubMed ID: 17822575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative visual function in five sciaenid fishes inhabiting Chesapeake Bay.
    Horodysky AZ; Brill RW; Warrant EJ; Musick JA; Latour RJ
    J Exp Biol; 2008 Nov; 211(Pt 22):3601-12. PubMed ID: 18978225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats.
    Crescitelli F; McFall-Ngai M; Horwitz J
    J Comp Physiol A; 1985 Oct; 157(3):323-33. PubMed ID: 3837092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.
    Tanaka Y; Nakayama J
    Clin Interv Aging; 2016; 11():1027-33. PubMed ID: 27536083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes.
    Pignatelli V; Temple SE; Chiou TH; Roberts NW; Collin SP; Marshall NJ
    Philos Trans R Soc Lond B Biol Sci; 2011 Mar; 366(1565):734-41. PubMed ID: 21282177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.
    Ehlman SM; Sandkam BA; Breden F; Sih A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Dec; 201(12):1125-35. PubMed ID: 26427995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spectral transmission of freshwater teleost ocular media--an interspecific comparison and a guide to potential ultraviolet sensitivity.
    Douglas RH; McGuigan CM
    Vision Res; 1989; 29(7):871-9. PubMed ID: 2623829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral tuning in the eyes of deep-sea lanternfishes (Myctophidae): a novel sexually dimorphic intra-ocular filter.
    de Busserolles F; Hart NS; Hunt DM; Davies WI; Marshall NJ; Clarke MW; Hahne D; Collin SP
    Brain Behav Evol; 2015; 85(2):77-93. PubMed ID: 25766394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red (660 nm) or near-infrared (810 nm) photobiomodulation stimulates, while blue (415 nm), green (540 nm) light inhibits proliferation in human adipose-derived stem cells.
    Wang Y; Huang YY; Wang Y; Lyu P; Hamblin MR
    Sci Rep; 2017 Aug; 7(1):7781. PubMed ID: 28798481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phototactic Behavioral Response of the Ectoparasitoid Beetle Dastarcus helophoroides (Coleoptera: Bothrideridae): Evidence for Attraction by Near-Infrared Light.
    Wang Q; Guo Z; Zhang J; Chen Y; Zhou J; Pan Y; Liu X
    J Econ Entomol; 2021 Aug; 114(4):1549-1556. PubMed ID: 34170292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.