BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 23691220)

  • 1. Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae.
    Wu Z; Liu SQ; Huang D
    PLoS One; 2013; 8(5):e64448. PubMed ID: 23691220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium.
    Santos J; Leitão-Correia F; Sousa MJ; Leão C
    Oncotarget; 2015 Mar; 6(9):6511-23. PubMed ID: 25576917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent and additive effects of glutamic acid and methionine on yeast longevity.
    Wu Z; Song L; Liu SQ; Huang D
    PLoS One; 2013; 8(11):e79319. PubMed ID: 24244480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomewide mechanisms of chronological longevity by dietary restriction in budding yeast.
    Campos SE; Avelar-Rivas JA; Garay E; Juárez-Reyes A; DeLuna A
    Aging Cell; 2018 Jun; 17(3):e12749. PubMed ID: 29575540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast.
    Choi KM; Kwon YY; Lee CK
    Exp Gerontol; 2013 Dec; 48(12):1455-68. PubMed ID: 24126084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae.
    Wu Z; Song L; Liu SQ; Huang D
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8617-28. PubMed ID: 24970458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-nutrient interaction markedly influences yeast chronological lifespan.
    Smith DL; Maharrey CH; Carey CR; White RA; Hartman JL
    Exp Gerontol; 2016 Dec; 86():113-123. PubMed ID: 27125759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae.
    Huberts DH; González J; Lee SS; Litsios A; Hubmann G; Wit EC; Heinemann M
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11727-31. PubMed ID: 25071164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomics of dietary restriction and longevity in yeast.
    Campos SE; DeLuna A
    Mech Ageing Dev; 2019 Apr; 179():36-43. PubMed ID: 30790575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.
    Baiges I; Arola L
    J Frailty Aging; 2016; 5(3):186-90. PubMed ID: 29240368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA replication stress is a determinant of chronological lifespan in budding yeast.
    Weinberger M; Feng L; Paul A; Smith DL; Hontz RD; Smith JS; Vujcic M; Singh KK; Huberman JA; Burhans WC
    PLoS One; 2007 Aug; 2(8):e748. PubMed ID: 17710147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status.
    Lee BC; Kaya A; Ma S; Kim G; Gerashchenko MV; Yim SH; Hu Z; Harshman LG; Gladyshev VN
    Nat Commun; 2014 Apr; 5():3592. PubMed ID: 24710037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Availability of Amino Acids Extends Chronological Lifespan by Suppressing Hyper-Acidification of the Environment in Saccharomyces cerevisiae.
    Maruyama Y; Ito T; Kodama H; Matsuura A
    PLoS One; 2016; 11(3):e0151894. PubMed ID: 26991662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast.
    Aris JP; Alvers AL; Ferraiuolo RA; Fishwick LK; Hanvivatpong A; Hu D; Kirlew C; Leonard MT; Losin KJ; Marraffini M; Seo AY; Swanberg V; Westcott JL; Wood MS; Leeuwenburgh C; Dunn WA
    Exp Gerontol; 2013 Oct; 48(10):1107-19. PubMed ID: 23337777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary restriction and lifespan: Lessons from invertebrate models.
    Kapahi P; Kaeberlein M; Hansen M
    Ageing Res Rev; 2017 Oct; 39():3-14. PubMed ID: 28007498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caloric restriction controls stationary phase survival through Protein Kinase A (PKA) and cytosolic pH.
    Dolz-Edo L; van der Deen M; Brul S; Smits GJ
    Aging Cell; 2019 Jun; 18(3):e12921. PubMed ID: 30790427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism.
    Tahara EB; Cunha FM; Basso TO; Della Bianca BE; Gombert AK; Kowaltowski AJ
    PLoS One; 2013; 8(2):e56388. PubMed ID: 23409181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated microgravity accelerates aging in Saccharomyces cerevisiae.
    Fukuda APM; Camandona VL; Francisco KJM; Rios-Anjos RM; Lucio do Lago C; Ferreira-Junior JR
    Life Sci Space Res (Amst); 2021 Feb; 28():32-40. PubMed ID: 33612178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells.
    Johnson JE; Johnson FB
    PLoS One; 2014; 9(5):e97729. PubMed ID: 24830393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.