These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23691239)

  • 1. Thioridazine induces major changes in global gene expression and cell wall composition in methicillin-resistant Staphylococcus aureus USA300.
    Thorsing M; Klitgaard JK; Atilano ML; Skov MN; Kolmos HJ; Filipe SR; Kallipolitis BH
    PLoS One; 2013; 8(5):e64518. PubMed ID: 23691239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Sodium Bicarbonate on Wall Teichoic Acid Synthesis and β-Lactam Sensitization in NaHCO
    Ersoy SC; Gonçalves B; Cavaco G; Manna AC; Sobral RG; Nast CC; Proctor RA; Chambers HF; Cheung A; Bayer AS
    Microbiol Spectr; 2022 Dec; 10(6):e0342222. PubMed ID: 36377886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spermine and oxacillin stress response on the cell wall synthesis and the global gene expression analysis in Methicillin-resistance Staphylococcus aureus.
    Pawar S; Yao X; Lu CD
    Genes Genomics; 2019 Jan; 41(1):43-59. PubMed ID: 30229508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of thioridazine resistance in Staphylococcus aureus.
    Wassmann CS; Lund LC; Thorsing M; Lauritzen SP; Kolmos HJ; Kallipolitis BH; Klitgaard JK
    PLoS One; 2018; 13(8):e0201767. PubMed ID: 30089175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus.
    Bonde M; Højland DH; Kolmos HJ; Kallipolitis BH; Klitgaard JK
    FEMS Microbiol Lett; 2011 May; 318(2):168-76. PubMed ID: 21375577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free quantitative proteomics analysis of antibiotic response in Staphylococcus aureus to oxacillin.
    Liu X; Hu Y; Pai PJ; Chen D; Lam H
    J Proteome Res; 2014 Mar; 13(3):1223-33. PubMed ID: 24156611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PBP 2 mutant devoid of the transpeptidase domain abolishes spermine-β-lactam synergy in Staphylococcus aureus Mu50.
    Yao X; Lu CD
    Antimicrob Agents Chemother; 2012 Jan; 56(1):83-91. PubMed ID: 22005998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muropeptide signature of inhibitors of protein synthesis correlates with β-lactam synergism against methicillin-resistant Staphylococcus aureus.
    Guignard B; Majcherczyk PA; Monachon C; Vouillamoz J; Moreillon P
    Int J Antimicrob Agents; 2017 Jan; 49(1):53-61. PubMed ID: 27887965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease.
    Bæk KT; Gründling A; Mogensen RG; Thøgersen L; Petersen A; Paulander W; Frees D
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4593-603. PubMed ID: 24867990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.
    Reed P; Atilano ML; Alves R; Hoiczyk E; Sher X; Reichmann NT; Pereira PM; Roemer T; Filipe SR; Pereira-Leal JB; Ligoxygakis P; Pinho MG
    PLoS Pathog; 2015 May; 11(5):e1004891. PubMed ID: 25951442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus.
    Campbell J; Singh AK; Santa Maria JP; Kim Y; Brown S; Swoboda JG; Mylonakis E; Wilkinson BJ; Walker S
    ACS Chem Biol; 2011 Jan; 6(1):106-16. PubMed ID: 20961110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Lactam Antibiotics with a High Affinity for PBP2 Act Synergistically with the FtsZ-Targeting Agent TXA707 against Methicillin-Resistant Staphylococcus aureus.
    Ferrer-González E; Kaul M; Parhi AK; LaVoie EJ; Pilch DS
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28630190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on Five and Six-Membered Heterocyclic Compounds Targeting the Penicillin-Binding Protein 2 (PBP2A) of Methicillin-Resistant
    Ambade SS; Gupta VK; Bhole RP; Khedekar PB; Chikhale RV
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894491
    [No Abstract]   [Full Text] [Related]  

  • 14. The Novel Membrane-Associated Auxiliary Factors AuxA and AuxB Modulate β-lactam Resistance in MRSA by stabilizing Lipoteichoic Acids.
    Mikkelsen K; Sirisarn W; Alharbi O; Alharbi M; Liu H; Nøhr-Meldgaard K; Mayer K; Vestergaard M; Gallagher LA; Derrick JP; McBain AJ; Biboy J; Vollmer W; O'Gara JP; Grunert T; Ingmer H; Xia G
    Int J Antimicrob Agents; 2021 Mar; 57(3):106283. PubMed ID: 33503451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Sle1 Cell Wall Amidase Is Essential for β-Lactam Resistance in Community-Acquired Methicillin-Resistant
    Thalsø-Madsen I; Torrubia FR; Xu L; Petersen A; Jensen C; Frees D
    Antimicrob Agents Chemother; 2019 Dec; 64(1):. PubMed ID: 31685469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VraT/YvqF is required for methicillin resistance and activation of the VraSR regulon in Staphylococcus aureus.
    Boyle-Vavra S; Yin S; Jo DS; Montgomery CP; Daum RS
    Antimicrob Agents Chemother; 2013 Jan; 57(1):83-95. PubMed ID: 23070169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.
    Otero LH; Rojas-Altuve A; Llarrull LI; Carrasco-López C; Kumarasiri M; Lastochkin E; Fishovitz J; Dawley M; Hesek D; Lee M; Johnson JW; Fisher JF; Chang M; Mobashery S; Hermoso JA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16808-13. PubMed ID: 24085846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus.
    Stapleton PD; Shah S; Ehlert K; Hara Y; Taylor PW
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2093-2103. PubMed ID: 17600054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-guided design of cell wall biosynthesis inhibitors that overcome β-lactam resistance in Staphylococcus aureus (MRSA).
    Contreras-Martel C; Amoroso A; Woon EC; Zervosen A; Inglis S; Martins A; Verlaine O; Rydzik AM; Job V; Luxen A; Joris B; Schofield CJ; Dessen A
    ACS Chem Biol; 2011 Sep; 6(9):943-51. PubMed ID: 21732689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant
    Campbell C; Fingleton C; Zeden MS; Bueno E; Gallagher LA; Shinde D; Ahn J; Olson HM; Fillmore TL; Adkins JN; Razvi F; Bayles KW; Fey PD; Thomas VC; Cava F; Clair GC; O'Gara JP
    mBio; 2021 Jun; 12(3):e0053021. PubMed ID: 34182779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.