These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23691662)

  • 1. Precipitation legacies in desert grassland primary production occur through previous-year tiller density.
    Reichmann LG; Sala OE; Peters DP
    Ecology; 2013 Feb; 94(2):435-43. PubMed ID: 23691662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Legacies of precipitation fluctuations on primary production: theory and data synthesis.
    Sala OE; Gherardi LA; Reichmann L; Jobbágy E; Peters D
    Philos Trans R Soc Lond B Biol Sci; 2012 Nov; 367(1606):3135-44. PubMed ID: 23045711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate legacies determine grassland responses to future rainfall regimes.
    Broderick CM; Wilkins K; Smith MD; Blair JM
    Glob Chang Biol; 2022 Apr; 28(8):2639-2656. PubMed ID: 35015919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change scenarios of herbaceous production along an aridity gradient: vulnerability increases with aridity.
    Golodets C; Sternberg M; Kigel J; Boeken B; Henkin Z; Seligman NG; Ungar ED
    Oecologia; 2015 Apr; 177(4):971-9. PubMed ID: 25663330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of interannual precipitation variability on dryland productivity: A global synthesis.
    Gherardi LA; Sala OE
    Glob Chang Biol; 2019 Jan; 25(1):269-276. PubMed ID: 30338886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods.
    Petrie MD; Peters DPC; Yao J; Blair JM; Burruss ND; Collins SL; Derner JD; Gherardi LA; Hendrickson JR; Sala OE; Starks PJ; Steiner JL
    Glob Chang Biol; 2018 May; 24(5):1935-1951. PubMed ID: 29265568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation.
    Felton AJ; Knapp AK; Smith MD
    Oecologia; 2019 Mar; 189(3):565-576. PubMed ID: 30411149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
    Li F; Zhao W; Liu H
    J Plant Res; 2015 Mar; 128(2):283-94. PubMed ID: 25613044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of grass response in grasslands and shrublands during dry or wet periods.
    Peters DP; Yao J; Browning D; Rango A
    Oecologia; 2014 Apr; 174(4):1323-34. PubMed ID: 24263235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland.
    Robertson TR; Bell CW; Zak JC; Tissue DT
    New Phytol; 2009; 181(1):230-242. PubMed ID: 19076724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?
    Verburg PS; Young AC; Stevenson BA; Glanzmann I; Arnone JA; Marion GM; Holmes C; Nowak RS
    Glob Chang Biol; 2013 Mar; 19(3):948-56. PubMed ID: 23504850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland.
    Felton AJ; Slette IJ; Smith MD; Knapp AK
    Glob Chang Biol; 2020 Feb; 26(2):658-668. PubMed ID: 31386797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.
    Wilcox KR; von Fischer JC; Muscha JM; Petersen MK; Knapp AK
    Glob Chang Biol; 2015 Jan; 21(1):335-44. PubMed ID: 25044242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifts in species composition constrain restoration of overgrazed grassland using nitrogen fertilization in Inner Mongolian steppe, China.
    Chen Q; Hooper DU; Lin S
    PLoS One; 2011 Mar; 6(3):e16909. PubMed ID: 21390304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen rather than phosphorous addition alters the asymmetric responses of primary productivity to precipitation variability across a precipitation gradient on the northern Tibetan Plateau.
    Yu J; Hou G; Shi P; Zong N; Peng J
    Sci Total Environ; 2024 Jan; 907():167856. PubMed ID: 37866615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetation structure constrains primary production response to water availability in the Patagonian steppe.
    Yahdjian L; Sala OE
    Ecology; 2006 Apr; 87(4):952-62. PubMed ID: 16676539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation among biomes in temporal dynamics of aboveground primary production.
    Knapp AK; Smith MD
    Science; 2001 Jan; 291(5503):481-4. PubMed ID: 11161201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Press-pulse interactions: effects of warming, N deposition, altered winter precipitation, and fire on desert grassland community structure and dynamics.
    Collins SL; Ladwig LM; Petrie MD; Jones SK; Mulhouse JM; Thibault JR; Pockman WT
    Glob Chang Biol; 2017 Mar; 23(3):1095-1108. PubMed ID: 27612326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. As above, not so below: Long-term dynamics of net primary production across a dryland transition zone.
    Brown RF; Collins SL
    Glob Chang Biol; 2023 Jul; 29(14):3941-3953. PubMed ID: 37095743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland.
    Heisler-White JL; Knapp AK; Kelly EF
    Oecologia; 2008 Nov; 158(1):129-40. PubMed ID: 18670792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.