These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23691826)

  • 1. Automated video exposure assessment of repetitive hand activity level for a load transfer task.
    Chen CH; Hu YH; Yen TY; Radwin RG
    Hum Factors; 2013 Apr; 55(2):298-308. PubMed ID: 23691826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.
    Chen CH; Azari DP; Hu YH; Lindstrom MJ; Thelen D; Yen TY; Radwin RG
    Ergonomics; 2015; 58(12):2057-66. PubMed ID: 25978764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring elemental time and duty cycle using automated video processing.
    Akkas O; Lee CH; Hu YH; Yen TY; Radwin RG
    Ergonomics; 2016 Nov; 59(11):1514-1525. PubMed ID: 26848051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.
    Greene RL; Azari DP; Hu YH; Radwin RG
    Appl Ergon; 2017 Nov; 65():461-472. PubMed ID: 28284701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring exertion time, duty cycle and hand activity level for industrial tasks using computer vision.
    Akkas O; Lee CH; Hu YH; Harris Adamson C; Rempel D; Radwin RG
    Ergonomics; 2017 Dec; 60(12):1730-1738. PubMed ID: 28640656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the observer, single-frame video and computer vision hand activity levels.
    Radwin RG; Hu YH; Akkas O; Bao S; Harris-Adamson C; Lin JH; Meyers AR; Rempel D
    Ergonomics; 2023 Aug; 66(8):1132-1141. PubMed ID: 36227226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hand speed-duty cycle equation for estimating the ACGIH hand activity level rating.
    Akkas O; Azari DP; Chen CH; Hu YH; Ulin SS; Armstrong TJ; Rempel D; Radwin RG
    Ergonomics; 2015; 58(2):184-94. PubMed ID: 25343278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A frequency-duty cycle equation for the ACGIH hand activity level.
    Radwin RG; Azari DP; Lindstrom MJ; Ulin SS; Armstrong TJ; Rempel D
    Ergonomics; 2015; 58(2):173-83. PubMed ID: 25343340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors.
    Colombini D; Occhipinti E
    Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A digital video system for the automated measurement of repetitive joint motion.
    Lu C; Ferrier NJ
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):399-404. PubMed ID: 15484445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of assessment methods of hand activity and force for use in calculating the ACGIH(R) hand activity level (HAL) TLV(R).
    Wurzelbacher S; Burt S; Crombie K; Ramsey J; Luo L; Allee S; Jin Y
    J Occup Environ Hyg; 2010 Jul; 7(7):407-16. PubMed ID: 20446152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction Detection in Egocentric Video: Toward a Novel Outcome Measure for Upper Extremity Function.
    Likitlersuang J; Zariffa J
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):561-569. PubMed ID: 28114045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of upper extremity biomechanical overload in automotive facility.
    Sancini A; Capozzella A; Caciar T; Tomei F; Nardone N; Scala B; Fiaschetti M; Cetica C; Scimitto L; Gioffrrè P; Sinibaldi F; Di Pastena C; Corbosiero P; Schifano MP; Tomei G; Ciarrocca M
    Biomed Environ Sci; 2013 Jan; 26(1):70-5. PubMed ID: 23294618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Surgical Technical Skill Using Expert Assessment for Automated Computer Rating.
    Azari DP; Frasier LL; Quamme SRP; Greenberg CC; Pugh CM; Greenberg JA; Radwin RG
    Ann Surg; 2019 Mar; 269(3):574-581. PubMed ID: 28885509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of hand volumetric and temperature changes during office related repetitive activities.
    Ugbolue UC; Nicol AC
    Work; 2014; 48(1):53-64. PubMed ID: 23803445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic algorithm for automatic hand pose and motion estimation.
    Cordella F; Corato FD; Siciliano B; Zollo L
    Med Biol Eng Comput; 2017 Dec; 55(12):2197-2208. PubMed ID: 28593507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithmically detectable directional changes in upper extremity motion indicate substantial myoelectric shoulder muscle fatigue during a repetitive manual task.
    Whittaker RL; La Delfa NJ; Dickerson CR
    Ergonomics; 2019 Mar; 62(3):431-443. PubMed ID: 30321104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders--part II: comparison of different methods of measuring force level and repetitiveness.
    Bao S; Howard N; Spielholz P; Silverstein B
    Ergonomics; 2006 Mar; 49(4):381-92. PubMed ID: 16690566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and validity assessment of the hand activity level threshold limit value and strain index using expert ratings of mono-task jobs.
    Spielholz P; Bao S; Howard N; Silverstein B; Fan J; Smith C; Salazar C
    J Occup Environ Hyg; 2008 Apr; 5(4):250-7. PubMed ID: 18286422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Job level risk assessment using task level ACGIH hand activity level TLV scores: a pilot study.
    Drinkaus P; Sesek R; Bloswick DS; Mann C; Bernard T
    Int J Occup Saf Ergon; 2005; 11(3):263-81. PubMed ID: 16219155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.