These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1310 related articles for article (PubMed ID: 23692027)
21. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Wang Y; Xiao Y; Tang R Chemistry; 2014 Sep; 20(37):11826-34. PubMed ID: 25077695 [TBL] [Abstract][Full Text] [Related]
22. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye. Yao T; Cui T; Wang H; Xu L; Cui F; Wu J Nanoscale; 2014 Jul; 6(13):7666-74. PubMed ID: 24899540 [TBL] [Abstract][Full Text] [Related]
23. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354 [TBL] [Abstract][Full Text] [Related]
24. Au/polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study. Feng W; Zhou X; Nie W; Chen L; Qiu K; Zhang Y; He C ACS Appl Mater Interfaces; 2015 Feb; 7(7):4354-67. PubMed ID: 25664659 [TBL] [Abstract][Full Text] [Related]
25. Self-Assembled Upconversion Nanoparticle Clusters for NIR-controlled Drug Release and Synergistic Therapy after Conjugation with Gold Nanoparticles. Cai H; Shen T; Kirillov AM; Zhang Y; Shan C; Li X; Liu W; Tang Y Inorg Chem; 2017 May; 56(9):5295-5304. PubMed ID: 28402112 [TBL] [Abstract][Full Text] [Related]
26. Size-controllable synthesis of surface-enhanced Raman scattering-active gold nanoparticles coated on TiO2. Kuo TC; Hsu TC; Liu YC; Yang KH Analyst; 2012 Aug; 137(16):3847-53. PubMed ID: 22763981 [TBL] [Abstract][Full Text] [Related]
27. Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Cheng Y; Samia AC; Li J; Kenney ME; Resnick A; Burda C Langmuir; 2010 Feb; 26(4):2248-55. PubMed ID: 19719162 [TBL] [Abstract][Full Text] [Related]
29. Photothermal exposure of polydopamine-coated branched Au-Ag nanoparticles induces cell cycle arrest, apoptosis, and autophagy in human bladder cancer cells. Zhao X; Qi T; Kong C; Hao M; Wang Y; Li J; Liu B; Gao Y; Jiang J Int J Nanomedicine; 2018; 13():6413-6428. PubMed ID: 30410328 [TBL] [Abstract][Full Text] [Related]
30. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Jin Y; Li Y; Ma X; Zha Z; Shi L; Tian J; Dai Z Biomaterials; 2014 Jul; 35(22):5795-804. PubMed ID: 24746966 [TBL] [Abstract][Full Text] [Related]
31. Polydopamine-coated Au-Ag nanoparticle-guided photothermal colorectal cancer therapy through multiple cell death pathways. Hao M; Kong C; Jiang C; Hou R; Zhao X; Li J; Wang Y; Gao Y; Zhang H; Yang B; Jiang J Acta Biomater; 2019 Jan; 83():414-424. PubMed ID: 30366131 [TBL] [Abstract][Full Text] [Related]
33. Understanding the photothermal conversion efficiency of gold nanocrystals. Chen H; Shao L; Ming T; Sun Z; Zhao C; Yang B; Wang J Small; 2010 Oct; 6(20):2272-80. PubMed ID: 20827680 [TBL] [Abstract][Full Text] [Related]
34. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Gao F; He G; Yin H; Chen J; Liu Y; Lan C; Zhang S; Yang B Nanoscale; 2019 Jan; 11(5):2374-2384. PubMed ID: 30667014 [TBL] [Abstract][Full Text] [Related]
35. Preparation and Biocompatibility of Gold@ Polypyrrole-Chitosan with Core-Shell Nanostructure. Wu Y; Wang Y; Chen H; Ge S; Zhang J; Mao C; Ding H; Shen J J Nanosci Nanotechnol; 2016 Mar; 16(3):2343-9. PubMed ID: 27455639 [TBL] [Abstract][Full Text] [Related]
36. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. Shan X; Chen Q; Yin X; Jiang C; Li T; Wei S; Zhang X; Sun G; Liu J; Lu L J Mater Chem B; 2020 Jan; 8(3):426-437. PubMed ID: 31833528 [TBL] [Abstract][Full Text] [Related]
37. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment. Jiang T; Song J; Zhang W; Wang H; Li X; Xia R; Zhu L; Xu X ACS Appl Mater Interfaces; 2015 Oct; 7(39):21985-94. PubMed ID: 26371629 [TBL] [Abstract][Full Text] [Related]
38. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Xiao JW; Fan SX; Wang F; Sun LD; Zheng XY; Yan CH Nanoscale; 2014 Apr; 6(8):4345-51. PubMed ID: 24622916 [TBL] [Abstract][Full Text] [Related]
39. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach. Chang M; Kim T; Park HW; Kang M; Reichmanis E; Yoon H ACS Appl Mater Interfaces; 2012 Aug; 4(8):4357-65. PubMed ID: 22860984 [TBL] [Abstract][Full Text] [Related]
40. Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy. Meng L; Niu L; Li L; Lu Q; Fei Z; Dyson PJ Chemistry; 2012 Oct; 18(42):13314-9. PubMed ID: 22945763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]