These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23692287)

  • 1. Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers.
    Lacerda PS; Barros-Timmons AM; Freire CS; Silvestre AJ; Neto CP
    Biomacromolecules; 2013 Jun; 14(6):2063-73. PubMed ID: 23692287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of bacterial cellulose aerogels by ARGET ATRP.
    Liu X; Li Y; Chu Z; Fang Y; Zheng H
    J Appl Biomater Funct Mater; 2018 Jan; 16(1_suppl):163-169. PubMed ID: 29618253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a thermosensitive highly regioselective cellulose/N-isopropylacrylamide copolymer through atom transfer radical polymerization.
    Ifuku S; Kadla JF
    Biomacromolecules; 2008 Nov; 9(11):3308-13. PubMed ID: 18937402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP).
    Morandi G; Heath L; Thielemans W
    Langmuir; 2009 Jul; 25(14):8280-6. PubMed ID: 19348498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grafting poly(methyl methacrylate) onto polyimide nanofibers via "click" reaction.
    Chang Z; Xu Y; Zhao X; Zhang Q; Chen D
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2804-11. PubMed ID: 20356160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-pressure atom transfer radical polymerization of n-butyl acrylate.
    Wang Y; Schroeder H; Morick J; Buback M; Matyjaszewski K
    Macromol Rapid Commun; 2013 Apr; 34(7):604-9. PubMed ID: 23417957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly active ppm level organic copper catalyzed photo-induced ICAR ATRP of methyl methacrylate.
    Jiang X; Wu J; Zhang L; Cheng Z; Zhu X
    Macromol Rapid Commun; 2014 Nov; 35(21):1879-85. PubMed ID: 25250767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement.
    Li S; Xiao M; Zheng A; Xiao H
    Biomacromolecules; 2011 Sep; 12(9):3305-12. PubMed ID: 21797219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of ABA-Type Triblock Copolymers Using Novel Bifunctional PS, PMMA, and PCL Macroinitiators Bearing
    Mısır M; Savaskan Yılmaz S; Bilgin A
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.
    Yu J; Wang C; Wang J; Chu F
    Carbohydr Polym; 2016 May; 141():143-50. PubMed ID: 26877006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents.
    Richard RE; Schwarz M; Ranade S; Chan AK; Matyjaszewski K; Sumerlin B
    Biomacromolecules; 2005; 6(6):3410-8. PubMed ID: 16283773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex nanostructured materials from segmented copolymers prepared by ATRP.
    Kowalewski T; McCullough RD; Matyjaszewski K
    Eur Phys J E Soft Matter; 2003 Jan; 10(1):5-16. PubMed ID: 15011074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization.
    Liu X; Xu Y; Yu J; Li S; Wang J; Wang C; Chu F
    Int J Biol Macromol; 2014 Jun; 67():483-9. PubMed ID: 24742785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and properties of polypyrrole/bacterial cellulose nanocomposites.
    Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM
    Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Initiated Initiators for Continuous Activator Regeneration (SI ICAR) ATRP of MMA from 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO) Oxidized Cellulose Nanofibers for the Preparations of PMMA Nanocomposites.
    Tu CW; Tsai FC; Chang CJ; Yang CH; Kuo SW; Zhang J; Chen T; Huang CF
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31600916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATRP grafting from cellulose fibers to create block-copolymer grafts.
    Carlmark A; Malmström EE
    Biomacromolecules; 2003; 4(6):1740-5. PubMed ID: 14606904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of graft copolymers based on poly(2-methoxyethyl acrylate) and investigation of the associated water structure.
    Javakhishvili I; Tanaka M; Ogura K; Jankova K; Hvilsted S
    Macromol Rapid Commun; 2012 Feb; 33(4):319-25. PubMed ID: 22271568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals
    Kiriakou MV; Berry RM; Hoare T; Cranston ED
    Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.
    Gadim TD; Figueiredo AG; Rosero-Navarro NC; Vilela C; Gamelas JA; Barros-Timmons A; Neto CP; Silvestre AJ; Freire CS; Figueiredo FM
    ACS Appl Mater Interfaces; 2014 May; 6(10):7864-75. PubMed ID: 24731218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.