These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23692368)

  • 41. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.
    Das C; Sheikh KH; Olmsted PD; Connell SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041920. PubMed ID: 21230326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Weak hydrostatic forces in far-scanning ion conductance microscopy used to guide neuronal growth cones.
    Pellegrino M; Orsini P; Pellegrini M; Baschieri P; Dinelli F; Petracchi D; Tognoni E; Ascoli C
    Neurosci Res; 2011 Mar; 69(3):234-40. PubMed ID: 21146567
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scanning ion conductance microscopy: a nanotechnology for biological studies in live cells.
    Liu BC; Lu XY; Song X; Lei KY; Alli AA; Bao HF; Eaton DC; Ma HP
    Front Physiol; 2012; 3():483. PubMed ID: 23335899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Influence of novel surface treatment of ITO anodes on the performance of OLED].
    Wang L; Zhang XQ; Lin P; Xiong DP; Huang SH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1207-9. PubMed ID: 16329481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
    Chung PS; Fan YJ; Sheen HJ; Tian WC
    Lab Chip; 2015 Jan; 15(1):319-30. PubMed ID: 25372369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanotubes: controlling conductance.
    Nordlund K; Hakonen P
    Nat Mater; 2005 Jul; 4(7):514-5. PubMed ID: 16003397
    [No Abstract]   [Full Text] [Related]  

  • 47. Patterning of self-assembled monolayers based on differences in molecular conductance.
    Shen C; Buck M
    Nanotechnology; 2009 Jun; 20(24):245306. PubMed ID: 19468158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications.
    Zhang Y; Zhang J; Su DS
    ChemSusChem; 2014 May; 7(5):1240-50. PubMed ID: 24678055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity.
    Rheinlaender J; Schäffer TE
    Nanoscale; 2019 Apr; 11(14):6982-6989. PubMed ID: 30916074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy.
    Ushiki T; Nakajima M; Choi M; Cho SJ; Iwata F
    Micron; 2012 Dec; 43(12):1390-8. PubMed ID: 22425359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell.
    Wang HY; Ruan YF; Zhu LB; Shi XM; Zhao WW; Chen HY; Xu JJ
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13244-13250. PubMed ID: 33340231
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative Visualization of Nanoscale Ion Transport.
    Zhou L; Gong Y; Hou J; Baker LA
    Anal Chem; 2017 Dec; 89(24):13603-13609. PubMed ID: 29164870
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scanning Ion-Conductance Microscopy for Studying Mechanical Properties of Neuronal Cells during Local Delivery of Glutamate.
    Kolmogorov V; Erofeev A; Vaneev A; Gorbacheva L; Kolesov D; Klyachko N; Korchev Y; Gorelkin P
    Cells; 2023 Oct; 12(20):. PubMed ID: 37887273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.
    Schierbaum N; Hack M; Betz O; Schäffer TE
    Anal Chem; 2018 Apr; 90(8):5048-5054. PubMed ID: 29569436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bias modulated scanning ion conductance microscopy.
    McKelvey K; Perry D; Byers JC; Colburn AW; Unwin PR
    Anal Chem; 2014 Apr; 86(7):3639-46. PubMed ID: 24617313
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition.
    Şen M; Takahashi Y; Matsumae Y; Horiguchi Y; Kumatani A; Ino K; Shiku H; Matsue T
    Anal Chem; 2015 Mar; 87(6):3484-9. PubMed ID: 25665161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combined scanning probe and total internal reflection fluorescence microscopy.
    Oreopoulos J; Yip CM
    Methods; 2008 Sep; 46(1):2-10. PubMed ID: 18602010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Status of biomolecular recognition using electrochemical techniques.
    Sadik OA; Aluoch AO; Zhou A
    Biosens Bioelectron; 2009 May; 24(9):2749-65. PubMed ID: 19054662
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new scanning mode to improve scanning ion conductance microscopy imaging rate with pipette predicted movement.
    Zhuang J; Jiao Y; Mugabo V
    Micron; 2017 Oct; 101():177-185. PubMed ID: 28763735
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Properties of nanobelts and nanotubes measured by in situ TEM.
    Wang ZL
    Microsc Microanal; 2004 Feb; 10(1):158-66. PubMed ID: 15306081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.