These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23692695)

  • 41. Freeze concentration during freezing: How does the maximally freeze concentrated solution influence protein stability?
    Seifert I; Friess W
    Int J Pharm; 2020 Nov; 589():119810. PubMed ID: 32866649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trehalose amorphization and recrystallization.
    Sussich F; Cesàro A
    Carbohydr Res; 2008 Oct; 343(15):2667-74. PubMed ID: 18768170
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermophysical properties of aqueous and frozen states of BSA/water/Tris systems.
    Hottot A; Daoussi R; Andrieu J
    Int J Biol Macromol; 2006 May; 38(3-5):225-31. PubMed ID: 16616363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of a thermodynamic model to the prediction of phase separations in freeze-concentrated formulations for protein lyophilization.
    Heller MC; Carpenter JF; Randolph TW
    Arch Biochem Biophys; 1999 Mar; 363(2):191-201. PubMed ID: 10068440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature.
    Yang G; Gilstrap K; Zhang A; Xu LX; He X
    Biotechnol Bioeng; 2010 Jun; 106(2):247-59. PubMed ID: 20148402
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measurement of glass transition temperatures in freeze concentrated solutions of non-electrolytes by electrical thermal analysis.
    Her LM; Jefferis RP; Gatlin LA; Braxton B; Nail SL
    Pharm Res; 1994 Jul; 11(7):1023-9. PubMed ID: 7937543
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data.
    Meister E; Gieseler H
    J Pharm Sci; 2009 Sep; 98(9):3072-87. PubMed ID: 18823013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement of glass transition temperatures of freeze-concentrated solutes by differential scanning calorimetry.
    Her LM; Nail SL
    Pharm Res; 1994 Jan; 11(1):54-9. PubMed ID: 8140056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal analysis of freeze-dried liposome-carbohydrate mixtures with modulated temperature differential scanning calorimetry.
    van Winden EC; Talsma H; Crommelin DJ
    J Pharm Sci; 1998 Feb; 87(2):231-7. PubMed ID: 9519159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic studies of glass vial breakage for frozen formulations. II. Vial breakage caused by amorphous protein formulations.
    Jiang G; Akers M; Jain M; Guo J; Distler A; Swift R; Wadhwa MV; Jameel F; Patro S; Freund E
    PDA J Pharm Sci Technol; 2007; 61(6):452-60. PubMed ID: 18410046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state.
    Anchordoquy TJ; Carpenter JF
    Arch Biochem Biophys; 1996 Aug; 332(2):231-8. PubMed ID: 8806730
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physical characterisation of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage.
    Passot S; Fonseca F; Alarcon-Lorca M; Rolland D; Marin M
    Eur J Pharm Biopharm; 2005 Aug; 60(3):335-48. PubMed ID: 15894475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Naked plasmid DNA formulation: effect of different disaccharides on stability after lyophilisation.
    Quaak SG; Haanen JB; Beijnen JH; Nuijen B
    AAPS PharmSciTech; 2010 Mar; 11(1):344-50. PubMed ID: 20204715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of frozen glucose solutions.
    Taylor LS; York P; Williams AC; Mehta V
    Pharm Dev Technol; 1997 Nov; 2(4):395-402. PubMed ID: 9552468
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of a laboratory-scale container for freezing protein solutions with detailed evaluation of a freezing process simulation.
    Roessl U; Jajcevic D; Leitgeb S; Khinast JG; Nidetzky B
    J Pharm Sci; 2014 Feb; 103(2):417-26. PubMed ID: 24338205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of Freezing on Lyophilization Process Performance and Drug Product Cake Appearance.
    Esfandiary R; Gattu SK; Stewart JM; Patel SM
    J Pharm Sci; 2016 Apr; 105(4):1427-33. PubMed ID: 27019959
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.
    Rosa M; Tiago JM; Singh SK; Geraldes V; Rodrigues MA
    AAPS PharmSciTech; 2016 Oct; 17(5):1049-59. PubMed ID: 26502885
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lyophilization cycle development for a high-concentration monoclonal antibody formulation lacking a crystalline bulking agent.
    Colandene JD; Maldonado LM; Creagh AT; Vrettos JS; Goad KG; Spitznagel TM
    J Pharm Sci; 2007 Jun; 96(6):1598-608. PubMed ID: 17117409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of sugars and polymers on crystallization of poly(ethylene glycol) in frozen solutions: phase separation between incompatible polymers.
    Izutsu K; Yoshioka S; Kojima S; Randolph TW; Carpenter JF
    Pharm Res; 1996 Sep; 13(9):1393-400. PubMed ID: 8893281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.