BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23693147)

  • 1. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.
    Kuprianov VI; Arromdee P
    Bioresour Technol; 2013 Jul; 140():199-210. PubMed ID: 23693147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of secondary gas injection on the peanut shell combustion and its pollutant emissions in a vortexing fluidized bed combustor.
    Duan F; Chyang CS; Wang YJ; Tso J
    Bioresour Technol; 2014 Feb; 154():201-8. PubMed ID: 24393745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-firing of eucalyptus bark and rubberwood sawdust in a swirling fluidized-bed combustor using an axial flow swirler.
    Chakritthakul S; Kuprianov VI
    Bioresour Technol; 2011 Sep; 102(17):8268-78. PubMed ID: 21729824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on rice husk combustion in a vortexing fluidized-bed with flue gas recirculation (FGR).
    Duan F; Chyang CS; Lin CW; Tso J
    Bioresour Technol; 2013 Apr; 134():204-11. PubMed ID: 23506977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels.
    Permchart W; Kouprianov VI
    Bioresour Technol; 2004 Mar; 92(1):83-91. PubMed ID: 14643990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor.
    Qian FP; Chyang CS; Huang KS; Tso J
    Bioresour Technol; 2011 Jan; 102(2):1892-8. PubMed ID: 20800476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combustion behavior of different kinds of torrefied biomass and their blends with lignite.
    Toptas A; Yildirim Y; Duman G; Yanik J
    Bioresour Technol; 2015 Feb; 177():328-36. PubMed ID: 25496955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.
    Lahijani P; Zainal ZA
    Bioresour Technol; 2011 Jan; 102(2):2068-76. PubMed ID: 20980143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization.
    Xiao X; Meng X; Le DD; Takarada T
    Bioresour Technol; 2011 Jan; 102(2):1975-81. PubMed ID: 20889337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor.
    Han J; Kim H; Minami W; Shimizu T; Wang G
    Bioresour Technol; 2008 Jun; 99(9):3782-6. PubMed ID: 17869096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combustion of an oil palm residue with elevated potassium content in a fluidized-bed combustor using alternative bed materials for preventing bed agglomeration.
    Ninduangdee P; Kuprianov VI
    Bioresour Technol; 2015 Apr; 182():272-281. PubMed ID: 25704101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on fluidized bed combustion characteristics of corncob in three different combustion modes.
    Chyang CS; Duan F; Lin SM; Tso J
    Bioresour Technol; 2012 Jul; 116():184-9. PubMed ID: 22609674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste.
    Cao JP; Xiao XB; Zhang SY; Zhao XY; Sato K; Ogawa Y; Wei XY; Takarada T
    Bioresour Technol; 2011 Jan; 102(2):2009-15. PubMed ID: 20943376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor.
    Duan F; Chyang CS; Zhang LH; Yin SF
    Bioresour Technol; 2015 May; 183():195-202. PubMed ID: 25742751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.
    Iliuta I; Leclerc A; Larachi F
    Bioresour Technol; 2010 May; 101(9):3194-208. PubMed ID: 20060289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.
    Amutio M; Lopez G; Alvarez J; Olazar M; Bilbao J
    Bioresour Technol; 2015 Oct; 194():225-32. PubMed ID: 26203554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.
    Cao Y; Zhou H; Fan J; Zhao H; Zhou T; Hack P; Chan CC; Liou JC; Pan WP
    Environ Sci Technol; 2008 Dec; 42(24):9378-84. PubMed ID: 19174919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of freeboard extension on co-combustion of coal and olive cake in a fluidized bed combustor.
    Akpulat O; Varol M; Atimtay AT
    Bioresour Technol; 2010 Aug; 101(15):6177-84. PubMed ID: 20347293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.