These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 236933)

  • 1. Studies on the characteristics of a proton pump in phospholipid vesicles inlayed with purified complex III from beef heart mitochondria.
    Guerrieri F; Nelson BD
    FEBS Lett; 1975 Jul; 54(3):339-42. PubMed ID: 236933
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration.
    Boveris A; Cadenas E
    FEBS Lett; 1975 Jul; 54(3):311-4. PubMed ID: 236930
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy conservation in detergent-treated mitochondria and purified succinate-cytochrome c reductase.
    Wilson DF; Koppelman M; Erecinska M; Dutton PL
    Biochem Biophys Res Commun; 1971 Aug; 44(4):759-66. PubMed ID: 5125224
    [No Abstract]   [Full Text] [Related]  

  • 4. Heme-heme interaction in cytochrome oxidase.
    Wilson DF; Lindsay JG; Brocklehurst ES
    Biochim Biophys Acta; 1972 Feb; 256(2):277-86. PubMed ID: 4335838
    [No Abstract]   [Full Text] [Related]  

  • 5. Charge separation and energy transfer in the mitochondrial membrane.
    Papa S; Guerrrieri F; Lorusso M
    Biophys J; 1975 Sep; 15(9):963-7. PubMed ID: 171011
    [No Abstract]   [Full Text] [Related]  

  • 6. Reconstitution of ion transport and respiratory control in vesicles formed from reduced coenzyme Q-cytochrome c reductase and phospholipids.
    Leung KH; Hinkle PC
    J Biol Chem; 1975 Nov; 250(21):8467-71. PubMed ID: 385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine nucleotide transport in submitochondrial particles and reconstituted vesicles derived from bovine heart mitochondria.
    Shertzer HG; Racker E
    J Biol Chem; 1974 Feb; 249(4):1320-1. PubMed ID: 4814345
    [No Abstract]   [Full Text] [Related]  

  • 8. Tetrahydrobiopterin, a cofactor in mitochondrial electron transfer. A soluble transfer system.
    Rembold H; Buff K
    Eur J Biochem; 1972 Aug; 28(4):586-91. PubMed ID: 4404222
    [No Abstract]   [Full Text] [Related]  

  • 9. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some properties of a cytochrome c-mixed mitochondrial phospholipid complex.
    Ivanetich KM; Henderson JJ; Kaminsky LS
    Biochemistry; 1974 Mar; 13(7):1469-76. PubMed ID: 4362225
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in oxidation-reduction potential of cytochrome b observed in the presence of antimycin A.
    Rieske JS
    Arch Biochem Biophys; 1971 Jul; 145(1):179-93. PubMed ID: 5123136
    [No Abstract]   [Full Text] [Related]  

  • 12. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by delta micro H+.
    Papa S; Lorusso M; Boffoli D; Bellomo E
    Eur J Biochem; 1983 Dec; 137(3):405-12. PubMed ID: 6319123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of phospholipid exchange proteins from beef heart.
    Zilversmit DB; Johnson LW
    Methods Enzymol; 1975; 35():262-9. PubMed ID: 235703
    [No Abstract]   [Full Text] [Related]  

  • 14. Electron paramagnetic resonance-detectable electron acceptors in beef heart mitochondria. Ubihydroquinone-cytochrome c reductase segment of the electron transfer system and complex mitochondrial fragments.
    Orme-Johnson NR; Hansen RE; Beinert H
    J Biol Chem; 1974 Mar; 249(6):1928-39. PubMed ID: 4361833
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol.
    Papa S; Lorusso M; Guerrieri F
    Biochim Biophys Acta; 1975 Jun; 387(3):425-40. PubMed ID: 237540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiration-driven proton transport in submitochondrial particles.
    Hinkle PC; Horstman LL
    J Biol Chem; 1971 Oct; 246(19):6024-8. PubMed ID: 4330063
    [No Abstract]   [Full Text] [Related]  

  • 17. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids.
    Hinkle PC; Kim JJ; Racker E
    J Biol Chem; 1972 Feb; 247(4):1338-9. PubMed ID: 4334497
    [No Abstract]   [Full Text] [Related]  

  • 18. Determination of the equilibrium constant for the binding of ferricytochrome c to phospholipid vesicles and the effect of binding on the reduction rate of cytochrome c.
    Cannon JB; Erman JE
    Biochim Biophys Acta; 1980 Jul; 600(1):19-26. PubMed ID: 6249360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity.
    Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT
    J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH on cytochromes b in ATP-Mg submitochondrial particles.
    Lee IY; Slater EC
    Biochim Biophys Acta; 1972 Feb; 256(2):587-93. PubMed ID: 4335843
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.