These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23694908)

  • 1. Influence of permittivity and electrical conductivity on image pattern of MRI.
    Harimoto T; Ohno S; Hattori K; Hirosue M; Miyai M; Shibuya K; Kuroda M; Kanazawa S; Kato H
    J Xray Sci Technol; 2013; 21(2):147-59. PubMed ID: 23694908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric resonance phenomena in ultra high field MRI.
    Kangarlu A; Baertlein BA; Lee R; Ibrahim T; Yang L; Abduljalil AM; Robitaille PM
    J Comput Assist Tomogr; 1999; 23(6):821-31. PubMed ID: 10589554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B(1)(+)/actual flip angle and reception sensitivity mapping methods: simulation and comparison.
    Hartwig V; Vanello N; Giovannetti G; De Marchi D; Lombardi M; Landini L; Santarelli MF
    Magn Reson Imaging; 2011 Jun; 29(5):717-22. PubMed ID: 21524872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved conductivity reconstruction from multi-echo MREIT utilizing weighted voxel-specific signal-to-noise ratios.
    Kim MN; Ha TY; Woo EJ; Kwon OI
    Phys Med Biol; 2012 Jun; 57(11):3643-59. PubMed ID: 22596083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of temperature distribution via recovering electrical conductivity in MREIT.
    Oh TI; Kim HJ; Jeong WC; Chauhan M; Kwon OI; Woo EJ
    Phys Med Biol; 2013 Apr; 58(8):2697-711. PubMed ID: 23552880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison between pig lumbar zypapophyseal joint cartilage acquired from multiple magnetic resonance image sequences and gross specimens].
    Liao H; Yu W; Wang W; Liao Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Oct; 35(10):1064-72. PubMed ID: 21051831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.
    Kim DH; Chauhan M; Kim MO; Jeong WC; Kim HJ; Sersa I; Kwon OI; Woo EJ
    IEEE Trans Med Imaging; 2015 Feb; 34(2):507-13. PubMed ID: 25312916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance electrical property mapping at 21.1 T: a study of conductivity and permittivity in phantoms, ex vivo tissue and in vivo ischemia.
    Amouzandeh G; Mentink-Vigier F; Helsper S; Bagdasarian FA; Rosenberg JT; Grant SC
    Phys Med Biol; 2020 Feb; 65(5):055007. PubMed ID: 31307020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging.
    Ziegler S; Braun H; Ritt P; Hocke C; Kuwert T; Quick HH
    J Nucl Med; 2013 Aug; 54(8):1464-71. PubMed ID: 23792278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional absolute conductivity reconstruction using projected current density in MREIT.
    Sajib SZ; Kim HJ; Kwon OI; Woo EJ
    Phys Med Biol; 2012 Sep; 57(18):5841-59. PubMed ID: 22951361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction of inhomogeneous RF field using multiple SPGR signals for high-field spin-echo MRI.
    Ishimori Y; Yamada K; Kimura H; Fujiwara Y; Yamaguchi I; Monma M; Uematsu H
    Magn Reson Med Sci; 2007; 6(2):67-73. PubMed ID: 17690536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of ion diffusion using magnetic resonance electrical impedance tomography.
    Hamamura MJ; Muftuler LT; Birgul O; Nalcioglu O
    Phys Med Biol; 2006 Jun; 51(11):2753-62. PubMed ID: 16723764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of direct current in electrically active implants using MRI methods.
    Wojtczyk H; Graf H; Martirosian P; Ballweg V; Kraiger M; Pintaske J; Schick F
    Z Med Phys; 2011 May; 21(2):135-46. PubMed ID: 21277177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An MRI digital brain phantom for validation of segmentation methods.
    Alfano B; Comerci M; Larobina M; Prinster A; Hornak JP; Selvan SE; Amato U; Quarantelli M; Tedeschi G; Brunetti A; Salvatore M
    Med Image Anal; 2011 Jun; 15(3):329-39. PubMed ID: 21317021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical realization of magnetic resonance conductivity tensor imaging (MRCTI).
    Değirmenci E; Eyüboğlu BM
    IEEE Trans Med Imaging; 2013 Mar; 32(3):601-8. PubMed ID: 23232415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials.
    Yang QX; Mao W; Wang J; Smith MB; Lei H; Zhang X; Ugurbil K; Chen W
    J Magn Reson Imaging; 2006 Jul; 24(1):197-202. PubMed ID: 16755543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-T1-weighted spin-echo MR imaging with contrast material: experimental and preliminary clinical assessment.
    Mihara F; Gupta KL; Righi AM
    Radiat Med; 1994; 12(5):209-12. PubMed ID: 7863024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical Note: T
    Gach HM
    Med Phys; 2019 Apr; 46(4):1785-1792. PubMed ID: 30723933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom.
    Liehr M; Haueisen J
    Phys Med Biol; 2008 Jan; 53(1):245-54. PubMed ID: 18182700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging.
    Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM
    Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.