These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 23694913)
1. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Amato E; Italiano A; Leotta S; Pergolizzi S; Torrisi L J Xray Sci Technol; 2013; 21(2):237-47. PubMed ID: 23694913 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons. Lin Y; Paganetti H; McMahon SJ; Schuemann J Med Phys; 2015 Oct; 42(10):5890-902. PubMed ID: 26429263 [TBL] [Abstract][Full Text] [Related]
3. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Martinov MP; Thomson RM Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308 [TBL] [Abstract][Full Text] [Related]
5. Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy. Berbeco RI; Ngwa W; Makrigiorgos GM Int J Radiat Oncol Biol Phys; 2011 Sep; 81(1):270-6. PubMed ID: 21163591 [TBL] [Abstract][Full Text] [Related]
6. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Cho SH Phys Med Biol; 2005 Aug; 50(15):N163-73. PubMed ID: 16030374 [TBL] [Abstract][Full Text] [Related]
7. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation. Liu R; Zhao T; Zhao X; Reynoso FJ Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039 [TBL] [Abstract][Full Text] [Related]
8. Determination of the dose enhancement exclusively in tumor tissue due to the presence of GNPs. Khodadadi A; Nedaie HA; Sadeghi M; Ghassemi MR; Mesbahi A; Banaee N Appl Radiat Isot; 2019 Mar; 145():39-46. PubMed ID: 30580248 [TBL] [Abstract][Full Text] [Related]
9. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy I: Cellular dose enhancement in microscopic models. Martinov MP; Fletcher EM; Thomson RM Med Phys; 2023 Sep; 50(9):5853-5864. PubMed ID: 37211878 [TBL] [Abstract][Full Text] [Related]
10. SU-E-T-10: Monte Carlo Study of the Dose Enhancement Factor (DEF) for Gold Nano-Particle (GNP) on the Cellular Level. Zhang M; Qin S; Haffty B; Yue N Med Phys; 2012 Jun; 39(6Part9):3704. PubMed ID: 28519059 [TBL] [Abstract][Full Text] [Related]
11. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Tran HN; Heuskin AC Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439 [TBL] [Abstract][Full Text] [Related]
12. Dosimetric consequences of gold nanoparticle clustering during photon irradiation. Kirkby C; Koger B; Suchowerska N; McKenzie DR Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464 [TBL] [Abstract][Full Text] [Related]
13. A detailed Monte Carlo evaluation of Gray T; Bassiri N; David S; Patel DY; Stathakis S; Kirby N; Mayer KM Phys Med Biol; 2020 Jul; 65(13):135007. PubMed ID: 32434159 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Douglass M; Bezak E; Penfold S Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414 [TBL] [Abstract][Full Text] [Related]
15. Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. Kakade NR; Sharma SD J Cancer Res Ther; 2015; 11(1):94-7. PubMed ID: 25879344 [TBL] [Abstract][Full Text] [Related]
16. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Tsiamas P; Liu B; Cifter F; Ngwa WF; Berbeco RI; Kappas C; Theodorou K; Marcus K; Makrigiorgos MG; Sajo E; Zygmanski P Phys Med Biol; 2013 Feb; 58(3):451-64. PubMed ID: 23302438 [TBL] [Abstract][Full Text] [Related]
17. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Rudek B; McNamara A; Ramos-Méndez J; Byrne H; Kuncic Z; Schuemann J Phys Med Biol; 2019 Aug; 64(17):175005. PubMed ID: 31295730 [TBL] [Abstract][Full Text] [Related]
18. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
19. Effect of gold nanoparticles on radiation doses in tumor treatment: a Monte Carlo study. Al-Musywel HA; Laref A Lasers Med Sci; 2017 Dec; 32(9):2073-2080. PubMed ID: 28948388 [TBL] [Abstract][Full Text] [Related]
20. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Lin Y; McMahon SJ; Scarpelli M; Paganetti H; Schuemann J Phys Med Biol; 2014 Dec; 59(24):7675-89. PubMed ID: 25415297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]