These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23695213)

  • 1. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway.
    Crossland H; Kazi AA; Lang CH; Timmons JA; Pierre P; Wilkinson DJ; Smith K; Szewczyk NJ; Atherton PJ
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E183-93. PubMed ID: 23695213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth.
    Gan B; Yoo Y; Guan JL
    J Biol Chem; 2006 Dec; 281(49):37321-9. PubMed ID: 17043358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes.
    Miyazaki M; McCarthy JJ; Esser KA
    FEBS J; 2010 May; 277(9):2180-91. PubMed ID: 20412061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ataxia telangiectasia mutated impacts insulin-like growth factor 1 signalling in skeletal muscle.
    Ching JK; Luebbert SH; Collins RL; Zhang Z; Marupudi N; Banerjee S; Hurd RD; Ralston L; Fisher JS
    Exp Physiol; 2013 Feb; 98(2):526-35. PubMed ID: 22941977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways.
    Marin TM; Clemente CF; Santos AM; Picardi PK; Pascoal VD; Lopes-Cendes I; Saad MJ; Franchini KG
    Circ Res; 2008 Oct; 103(8):813-24. PubMed ID: 18757826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1.
    Park IH; Erbay E; Nuzzi P; Chen J
    Exp Cell Res; 2005 Sep; 309(1):211-9. PubMed ID: 15963500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation.
    Ning J; Clemmons DR
    Mol Endocrinol; 2010 Jun; 24(6):1218-29. PubMed ID: 20363874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
    Smith EM; Finn SG; Tee AR; Browne GJ; Proud CG
    J Biol Chem; 2005 May; 280(19):18717-27. PubMed ID: 15772076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.
    Crossland H; Timmons JA; Atherton PJ
    FASEB J; 2017 Dec; 31(12):5196-5207. PubMed ID: 28774889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins.
    Liu L; Chen L; Chung J; Huang S
    Oncogene; 2008 Aug; 27(37):4998-5010. PubMed ID: 18504440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure.
    Lin CY; Hsu SC; Lee HS; Lin SH; Tsai CS; Huang SM; Shih CC; Hsu YJ
    J Vasc Surg; 2013 Feb; 57(2):475-85. PubMed ID: 23265586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle.
    Lang CH; Frost RA
    J Cell Physiol; 2005 Apr; 203(1):144-55. PubMed ID: 15389631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control.
    Gan B; Melkoumian ZK; Wu X; Guan KL; Guan JL
    J Cell Biol; 2005 Aug; 170(3):379-89. PubMed ID: 16043512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interferon beta augments tuberous sclerosis complex 2 (TSC2)-dependent inhibition of TSC2-null ELT3 and human lymphangioleiomyomatosis-derived cell proliferation.
    Goncharova EA; Goncharov DA; Chisolm A; Spaits MS; Lim PN; Cesarone G; Khavin I; Tliba O; Amrani Y; Panettieri RA; Krymskaya VP
    Mol Pharmacol; 2008 Mar; 73(3):778-88. PubMed ID: 18094073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent.
    Jaeschke A; Hartkamp J; Saitoh M; Roworth W; Nobukuni T; Hodges A; Sampson J; Thomas G; Lamb R
    J Cell Biol; 2002 Oct; 159(2):217-24. PubMed ID: 12403809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling.
    Jacobs BL; McNally RM; Kim KJ; Blanco R; Privett RE; You JS; Hornberger TA
    J Biol Chem; 2017 Apr; 292(17):6987-6997. PubMed ID: 28289099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. c-myc Repression of TSC2 contributes to control of translation initiation and Myc-induced transformation.
    Ravitz MJ; Chen L; Lynch M; Schmidt EV
    Cancer Res; 2007 Dec; 67(23):11209-17. PubMed ID: 18056446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early dietary restriction in rats alters skeletal muscle tuberous sclerosis complex, ribosomal s6 and mitogen-activated protein kinase.
    Calkins KL; Thamotharan S; Dai Y; Shin BC; Kalhan SC; Devaskar SU
    Nutr Res; 2018 Jun; 54():93-104. PubMed ID: 29685622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2).
    Rolfe M; McLeod LE; Pratt PF; Proud CG
    Biochem J; 2005 Jun; 388(Pt 3):973-84. PubMed ID: 15757502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.
    Trendelenburg AU; Meyer A; Rohner D; Boyle J; Hatakeyama S; Glass DJ
    Am J Physiol Cell Physiol; 2009 Jun; 296(6):C1258-70. PubMed ID: 19357233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.