BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23695259)

  • 21. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer.
    Boone CD; Pinard M; McKenna R; Silverman D
    Subcell Biochem; 2014; 75():31-52. PubMed ID: 24146373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational design engineering of a more thermostable Sulfurihydrogenibium yellowstonense carbonic anhydrase for potential application in carbon dioxide capture technologies.
    Ghaedizadeh S; Zeinali M; Dabirmanesh B; Rasekh B; Khajeh K; Banaei-Moghaddam AM
    Biochim Biophys Acta Proteins Proteom; 2024 Jan; 1872(1):140962. PubMed ID: 37716447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles.
    Perfetto R; Del Prete S; Vullo D; Sansone G; Barone CMA; Rossi M; Supuran CT; Capasso C
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):759-766. PubMed ID: 28497711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney.
    Fredslund F; Borchert MS; Poulsen JN; Mortensen SB; Perner M; Streit WR; Lo Leggio L
    Enzyme Microb Technol; 2018 Jul; 114():48-54. PubMed ID: 29685353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration.
    Effendi SSW; Chiu CY; Chang YK; Ng IS
    Int J Biol Macromol; 2020 Jun; 152():930-938. PubMed ID: 31794827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced recombinant Sulfurihydrogenibium yellowstonense carbonic anhydrase activity and thermostability by chaperone GroELS for carbon dioxide biomineralization.
    Wahyu Effendi SS; Tan SI; Ting WW; Ng IS
    Chemosphere; 2021 May; 271():128461. PubMed ID: 33131750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V.
    Heck RW; Boriack-Sjodin PA; Qian M; Tu C; Christianson DW; Laipis PJ; Silverman DN
    Biochemistry; 1996 Sep; 35(36):11605-11. PubMed ID: 8794740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo immobilized carbonic anhydrase and its effect on the enhancement of CO
    Fabbricino S; Del Prete S; Russo ME; Capasso C; Marzocchella A; Salatino P
    J Biotechnol; 2021 Aug; 336():41-49. PubMed ID: 34129873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alpha Carbonic Anhydrase from
    Manyumwa CV; Zhang C; Jers C; Mijakovic I
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prokaryotic carbonic anhydrases.
    Smith KS; Ferry JG
    FEMS Microbiol Rev; 2000 Oct; 24(4):335-66. PubMed ID: 10978542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prokaryotic carbonic anhydrases of Earth's environment.
    Kumar RS; Ferry JG
    Subcell Biochem; 2014; 75():77-87. PubMed ID: 24146375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO
    Manyumwa CV; Bishop ÖT
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and catalytic mechanism of β-carbonic anhydrases.
    Rowlett RS
    Subcell Biochem; 2014; 75():53-76. PubMed ID: 24146374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ARduino-pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in Escherichia coli.
    Hsu KP; Tan SI; Chiu CY; Chang YK; Ng IS
    Biotechnol Prog; 2019 Sep; 35(5):e2834. PubMed ID: 31074194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermostable Carbonic Anhydrases in Biotechnological Applications.
    Di Fiore A; Alterio V; Monti SM; De Simone G; D'Ambrosio K
    Int J Mol Sci; 2015 Jul; 16(7):15456-80. PubMed ID: 26184158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1.
    Kim S; Sung J; Yeon J; Choi SH; Jin MS
    Mol Cells; 2019 Jun; 42(6):460-469. PubMed ID: 31250619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of a dimeric fungal α-type carbonic anhydrase.
    Cuesta-Seijo JA; Borchert MS; Navarro-Poulsen JC; Schnorr KM; Mortensen SB; Lo Leggio L
    FEBS Lett; 2011 Apr; 585(7):1042-8. PubMed ID: 21377464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molten globule-like state of bovine carbonic anhydrase in the presence of acetonitrile.
    Safarian S; Saffarzadeh M; Zargar SJ; Moosavi-Movahedi AA
    J Biochem; 2006 Jun; 139(6):1025-33. PubMed ID: 16788053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.
    Yadav RR; Krishnamurthi K; Mudliar SN; Devi SS; Naoghare PK; Bafana A; Chakrabarti T
    J Basic Microbiol; 2014 Jun; 54(6):472-81. PubMed ID: 24740638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and function of carbonic anhydrases.
    Supuran CT
    Biochem J; 2016 Jul; 473(14):2023-32. PubMed ID: 27407171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.