BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2369557)

  • 1. Elucidation of chemical compounds responsible for foot malodour.
    Kanda F; Yagi E; Fukuda M; Nakajima K; Ohta T; Nakata O
    Br J Dermatol; 1990 Jun; 122(6):771-6. PubMed ID: 2369557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HS-SPME-GC-MS analysis of body odor to test the efficacy of foot deodorant formulations.
    Caroprese A; Gabbanini S; Beltramini C; Lucchi E; Valgimigli L
    Skin Res Technol; 2009 Nov; 15(4):503-10. PubMed ID: 19832965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC-MS Analysis of Short-Chain Fatty Acids in Feces, Cecum Content, and Blood Samples.
    Hoving LR; Heijink M; van Harmelen V; van Dijk KW; Giera M
    Methods Mol Biol; 2018; 1730():247-256. PubMed ID: 29363078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do cutaneous coryneform bacteria produce short-chain fatty acids in vitro?
    Lukacs A; Korting HC; Ruckdeschel G; Ehret W
    Dermatologica; 1991; 182(1):32-4. PubMed ID: 1901553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences.
    Barzantny H; Brune I; Tauch A
    Int J Cosmet Sci; 2012 Feb; 34(1):2-11. PubMed ID: 21790661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial variations in the microbial community structure and diversity of the human foot is associated with the production of odorous volatiles.
    Stevens D; Cornmell R; Taylor D; Grimshaw SG; Riazanskaia S; Arnold DS; Fernstad SJ; Smith AM; Heaney LM; Reynolds JC; Thomas CL; Harker M
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-11. PubMed ID: 25764539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of two-dimensional gas chromatography and high resolution olfactometry for the parallel determination of heat-induced toxicants and odorants in cooked food.
    Giri A; Khummueng W; Mercier F; Kondjoyan N; Tournayre P; Meurillon M; Ratel J; Engel E
    J Chromatogr A; 2015 Apr; 1388():217-26. PubMed ID: 25728653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry.
    Martin HJ; Reynolds JC; Riazanskaia S; Thomas CL
    Analyst; 2014 Sep; 139(17):4279-86. PubMed ID: 24992564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the definition and measurement of human scent: comments on Curran et Al.
    Preti G; Willse A; Labows JN; Leyden JJ; Wahl J; Kwak J
    J Chem Ecol; 2006 Aug; 32(8):1613-6; author reply 1617-23. PubMed ID: 16900421
    [No Abstract]   [Full Text] [Related]  

  • 10. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples.
    Zhang S; Wang H; Zhu MJ
    Talanta; 2019 May; 196():249-254. PubMed ID: 30683360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acute taste and odour episode solved by olfactory GC-MS.
    Bruchet A; Hochereau C; Campos C
    Water Sci Technol; 2007; 55(5):223-30. PubMed ID: 17489414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for measuring reaction times for odour detection at iso-intensity: Comparison between an unpleasant and pleasant odour.
    Jacob TJ; Wang L
    Physiol Behav; 2006 Mar; 87(3):500-5. PubMed ID: 16469339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of volatile fatty acids from cattle manure via non-catalytic esterification for odour indication.
    Lee SR; Lee J; Cho SH; Kim J; Oh JI; Tsang DCW; Jeong KH; Kwon EE
    Sci Total Environ; 2018 Jan; 610-611():992-996. PubMed ID: 28838036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples.
    García-Villalba R; Giménez-Bastida JA; García-Conesa MT; Tomás-Barberán FA; Carlos Espín J; Larrosa M
    J Sep Sci; 2012 Aug; 35(15):1906-13. PubMed ID: 22865755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odour-active compounds in papaya fruit cv. Red Maradol.
    Pino JA
    Food Chem; 2014 Mar; 146():120-6. PubMed ID: 24176322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Odour fingerprint acquisition by means of comprehensive two-dimensional gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography/mass spectrometry.
    d'Acampora Zellner B; Casilli A; Dugo P; Dugo G; Mondello L
    J Chromatogr A; 2007 Feb; 1141(2):279-86. PubMed ID: 17207489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2nd dimensional GC-MS analysis of sweat volatile organic compounds prepared by solid phase micro-extraction.
    Choi MJ; Oh CH
    Technol Health Care; 2014; 22(3):481-8. PubMed ID: 24763202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of human male armpit sweat after fenugreek ingestion: Characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry.
    Mebazaa R; Rega B; Camel V
    Food Chem; 2011 Sep; 128(1):227-35. PubMed ID: 25214354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Clostridium difficile in faeces by direct gas liquid chromatography.
    Levett PN
    J Clin Pathol; 1984 Feb; 37(2):117-9. PubMed ID: 6693575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile.
    Troccaz M; Starkenmann C; Niclass Y; van de Waal M; Clark AJ
    Chem Biodivers; 2004 Jul; 1(7):1022-35. PubMed ID: 17191896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.