BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23695637)

  • 1. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes.
    Westerhaus FA; Jagadeesh RV; Wienhöfer G; Pohl MM; Radnik J; Surkus AE; Rabeah J; Junge K; Junge H; Nielsen M; Brückner A; Beller M
    Nat Chem; 2013 Jun; 5(6):537-43. PubMed ID: 23695637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes.
    Jagadeesh RV; Stemmler T; Surkus AE; Bauer M; Pohl MM; Radnik J; Junge K; Junge H; Brückner A; Beller M
    Nat Protoc; 2015 Jun; 10(6):916-26. PubMed ID: 25996791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.
    Ye R; Zhukhovitskiy AV; Deraedt CV; Toste FD; Somorjai GA
    Acc Chem Res; 2017 Aug; 50(8):1894-1901. PubMed ID: 28704031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes.
    Romanazzi G; Petrelli V; Fiore AM; Mastrorilli P; Dell'Anna MM
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-Derived Catalysts for Selective Hydrogenation of Nitroarenes.
    Sahoo B; Formenti D; Topf C; Bachmann S; Scalone M; Junge K; Beller M
    ChemSusChem; 2017 Aug; 10(15):3035-3039. PubMed ID: 28650569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation.
    Wei J; Feng Y; Zhou P; Liu Y; Xu J; Xiang R; Ding Y; Zhao C; Fan L; Hu C
    ChemSusChem; 2015 Aug; 8(16):2630-4. PubMed ID: 26130568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base.
    Wienhöfer G; Sorribes I; Boddien A; Westerhaus F; Junge K; Junge H; Llusar R; Beller M
    J Am Chem Soc; 2011 Aug; 133(32):12875-9. PubMed ID: 21740024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation.
    Jones C; Taylor SH; Burrows A; Crudace MJ; Kiely CJ; Hutchings GJ
    Chem Commun (Camb); 2008 Apr; (14):1707-9. PubMed ID: 18368172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrosynthesis of highly transparent cobalt oxide water oxidation catalyst films from cobalt aminopolycarboxylate complexes.
    Bonke SA; Wiechen M; Hocking RK; Fang XY; Lupton DW; MacFarlane DR; Spiccia L
    ChemSusChem; 2015 Apr; 8(8):1394-403. PubMed ID: 25826458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and highly selective iron-catalyzed reduction of nitroarenes.
    Jagadeesh RV; Wienhöfer G; Westerhaus FA; Surkus AE; Pohl MM; Junge H; Junge K; Beller M
    Chem Commun (Camb); 2011 Oct; 47(39):10972-4. PubMed ID: 21897952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Co
    Yuan R; Hu L; Yu P; Wang H; Wang Z; Fang J
    Chemosphere; 2018 May; 198():204-215. PubMed ID: 29421731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts.
    Hutchings GS; Zhang Y; Li J; Yonemoto BT; Zhou X; Zhu K; Jiao F
    J Am Chem Soc; 2015 Apr; 137(12):4223-9. PubMed ID: 25759959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes.
    Nasrollahzadeh M; Sajadi SM; Rostami-Vartooni A; Alizadeh M; Bagherzadeh M
    J Colloid Interface Sci; 2016 Mar; 466():360-8. PubMed ID: 26752431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilized iron oxide nanoparticles as stable and reusable catalysts for hydrazine-mediated nitro reductions in continuous flow.
    Moghaddam MM; Pieber B; Glasnov T; Kappe CO
    ChemSusChem; 2014 Nov; 7(11):3122-31. PubMed ID: 25209099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of Co3O4 catalyst doped with CeO2 and PdO for methane catalytic combustion.
    Jodłowski PJ; Jędrzejczyk RJ; Rogulska A; Wach A; Kuśtrowski P; Sitarz M; Łojewski T; Kołodziej A; Łojewska J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():696-701. PubMed ID: 24913565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.
    Klingan K; Ringleb F; Zaharieva I; Heidkamp J; Chernev P; Gonzalez-Flores D; Risch M; Fischer A; Dau H
    ChemSusChem; 2014 May; 7(5):1301-10. PubMed ID: 24449514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water oxidation mechanism for synthetic Co-oxides with small nuclearity.
    Li X; Siegbahn PE
    J Am Chem Soc; 2013 Sep; 135(37):13804-13. PubMed ID: 23968287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water.
    Shi P; Su R; Zhu S; Zhu M; Li D; Xu S
    J Hazard Mater; 2012 Aug; 229-230():331-9. PubMed ID: 22738772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation.
    Nguyen AI; Ziegler MS; Oña-Burgos P; Sturzbecher-Hohne M; Kim W; Bellone DE; Tilley TD
    J Am Chem Soc; 2015 Oct; 137(40):12865-72. PubMed ID: 26390993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling effect between cobalt oxides and carbon for oxygen reduction reaction.
    Liu J; Jiang L; Tang Q; Zhang B; Su DS; Wang S; Sun G
    ChemSusChem; 2012 Dec; 5(12):2315-8. PubMed ID: 23143708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.