BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2369575)

  • 1. Na(+)-dependent, active nucleoside transport in mouse spleen lymphocytes, leukemia cells, fibroblasts and macrophages, but not in equivalent human or pig cells; dipyridamole enhances nucleoside salvage by cells with both active and facilitated transport.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Jun; 1025(1):32-42. PubMed ID: 2369575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-dependent, active and Na(+)-independent, facilitated transport of formycin B in mouse spleen lymphocytes.
    Plagemann PG; Aran JM; Woffendin C
    Biochim Biophys Acta; 1990 Feb; 1022(1):93-102. PubMed ID: 2302407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Na(+)-dependent, active nucleoside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells.
    Plagemann PG; Aran JM
    Biochim Biophys Acta; 1990 Oct; 1028(3):289-98. PubMed ID: 2223800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of formycin B as a general substrate for measuring facilitated nucleoside transport in mammalian cells.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1989 Jan; 1010(1):7-15. PubMed ID: 2909251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-dependent, active nucleoside transport in S49 mouse lymphoma cells and loss in AE-1 mutant deficient in facilitated nucleoside transport.
    Plagemann PG
    J Cell Biochem; 1991 May; 46(1):54-9. PubMed ID: 1874800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycoplasma contamination greatly enhances the apparent transport and concentrative accumulation of formycin B by mammalian cell culture.
    Plagemann PG
    Biochim Biophys Acta; 1991 Apr; 1064(1):162-4. PubMed ID: 1902747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-dependent, concentrative nucleoside transport in Walker 256 rat carcinosarcoma cells.
    Crawford CR; Belt JA
    Biochem Biophys Res Commun; 1991 Mar; 175(3):846-51. PubMed ID: 2025258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium-dependent nucleoside transport in mouse leukemia L1210 cells.
    Dagnino L; Bennett LL; Paterson AR
    J Biol Chem; 1991 Apr; 266(10):6308-11. PubMed ID: 2007583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and release of [3H]formycin B via sodium-dependent nucleoside transporters in mouse leukemic L1210/MA27.1 cells.
    Borgland SL; Parkinson FE
    J Pharmacol Exp Ther; 1997 Apr; 281(1):347-53. PubMed ID: 9103516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Dagnino L; Paterson AR
    Cancer Res; 1990 Oct; 50(20):6549-53. PubMed ID: 1698538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-dependent, concentrative nucleoside transport in rat macrophages. Specificity for natural nucleosides and nucleoside analogs, including dideoxynucleosides, and comparison of nucleoside transport in rat, mouse and human macrophages.
    Plagemann PG
    Biochem Pharmacol; 1991 Jul; 42(2):247-52. PubMed ID: 1859446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-dependent and -independent transport of uridine and its phosphorylation in mouse spleen cells.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1989 Jun; 981(2):315-25. PubMed ID: 2730909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nucleoside transport inhibitors on the salvage and toxicity of adenosine and deoxyadenosine in L1210 and P388 mouse leukemia cells.
    Plagemann PG; Wohlhueter RM
    Cancer Res; 1985 Dec; 45(12 Pt 1):6418-24. PubMed ID: 3877568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters.
    Crawford CR; Ng CY; Noel LD; Belt JA
    J Biol Chem; 1990 Jun; 265(17):9732-6. PubMed ID: 2351668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent, concentrative nucleoside transport in cultured intestinal epithelial cells.
    Jakobs ES; Paterson AR
    Biochem Biophys Res Commun; 1986 Nov; 140(3):1028-35. PubMed ID: 3778480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-dependent nucleoside transport in rabbit intestinal epithelium.
    Roden M; Paterson AR; Turnheim K
    Gastroenterology; 1991 Jun; 100(6):1553-62. PubMed ID: 2019361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L1210/B23.1 cells express equilibrative, inhibitor-sensitive nucleoside transport activity and lack two parental nucleoside transport activities.
    Vijayalakshmi D; Dagnino L; Belt JA; Gati WP; Cass CE; Paterson AR
    J Biol Chem; 1992 Aug; 267(24):16951-6. PubMed ID: 1512237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of 2',2'-difluorodeoxycytidine (gemcitabine) and formycin B with the Na+-dependent and -independent nucleoside transporters of Ehrlich ascites tumor cells.
    Burke T; Lee S; Ferguson PJ; Hammond JR
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1333-40. PubMed ID: 9732397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of an L1210 cell line retaining the sodium-dependent carrier cif as its sole nucleoside transport activity.
    Crawford CR; Ng CY; Belt JA
    J Biol Chem; 1990 Aug; 265(23):13730-4. PubMed ID: 1974252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium-dependent nucleoside transport in mouse lymphocytes, human monocytes, and hamster macrophages and peritoneal exudate cells.
    Baer HP; Moorji A; Ogbunude PO; Serignese V
    Can J Physiol Pharmacol; 1992 Jan; 70(1):29-35. PubMed ID: 1581852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.