These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 2369582)
1. Composition of polar lipid acyl chains of Bacillus stearothermophilus as affected by temperature and calcium. Martins LO; Jurado AS; Madeira VM Biochim Biophys Acta; 1990 Jun; 1045(1):17-20. PubMed ID: 2369582 [TBL] [Abstract][Full Text] [Related]
2. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Reizer J; Grossowicz N; Barenholz Y Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029 [TBL] [Abstract][Full Text] [Related]
3. Physical studies on membrane lipids of Bacillus stearothermophilus temperature and calcium effects. Jurado AS; Pinheiro TJ; Madeira VM Arch Biochem Biophys; 1991 Aug; 289(1):167-79. PubMed ID: 1898060 [TBL] [Abstract][Full Text] [Related]
4. Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax. Weerkamp A; Heinen W J Bacteriol; 1972 Jan; 109(1):443-6. PubMed ID: 5057772 [TBL] [Abstract][Full Text] [Related]
5. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus. McElhaney RN; Souza KA Biochim Biophys Acta; 1976 Sep; 443(3):348-59. PubMed ID: 183821 [TBL] [Abstract][Full Text] [Related]
6. Effects of a lipophilic environmental pollutant (DDT) on the phospholipid and fatty acid contents of Bacillus stearothermophilus. Donato MM; Jurado AS; Antunes-Madeira MC; Madeira VM Arch Environ Contam Toxicol; 1997 Nov; 33(4):341-9. PubMed ID: 9419252 [TBL] [Abstract][Full Text] [Related]
7. Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone. Rosa SM; Antunes-Madeira MC; Matos MJ; Jurado AS; Madeira VM Biochim Biophys Acta; 2000 Sep; 1487(2-3):286-95. PubMed ID: 11018480 [TBL] [Abstract][Full Text] [Related]
8. Effect of growth temperature and media composition on the fatty acid composition of Bacillus stearothermophilus AN 002. Bezbaruah RL; Pillai KR; Gogoi BK; Baruah JN Antonie Van Leeuwenhoek; 1988; 54(1):37-45. PubMed ID: 2455474 [TBL] [Abstract][Full Text] [Related]
9. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Suutari M; Laakso S Biochim Biophys Acta; 1992 Jun; 1126(2):119-24. PubMed ID: 1627613 [TBL] [Abstract][Full Text] [Related]
10. Sexual differences in branched chain amino acid metabolism into fatty acids and cholesterol in Harderian gland of golden hamster. Hida A; Uchijima Y; Seyama Y J Biochem; 1998 Sep; 124(3):648-53. PubMed ID: 9722679 [TBL] [Abstract][Full Text] [Related]
11. A pathway for the biosynthesis of straight and branched, odd- and even-length, medium-chain fatty acids in plants. Kroumova AB; Xie Z; Wagner GJ Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11437-41. PubMed ID: 7972080 [TBL] [Abstract][Full Text] [Related]
12. Lipid composition changes induced by tamoxifen in a bacterial model system. Luxo C; Jurado AS; Madeira VM Biochim Biophys Acta; 1998 Feb; 1369(1):71-84. PubMed ID: 9528675 [TBL] [Abstract][Full Text] [Related]
13. Factors affecting the normal and branched-chain acyl moieties of teicoplanin components produced by Actinoplanes teichomyceticus. Borghi A; Edwards D; Zerilli LF; Lancini GC J Gen Microbiol; 1991 Mar; 137(3):587-92. PubMed ID: 1827835 [TBL] [Abstract][Full Text] [Related]
14. Changes in the membrane fatty acid composition in Anoxybacillus flavithermus subsp. yunnanensis E13 Peng H; Yi L; Zhang X; Xiao Y; Gao Y; He C Arch Microbiol; 2017 Jan; 199(1):1-8. PubMed ID: 27387529 [TBL] [Abstract][Full Text] [Related]
15. Sporulation in Bacillus subtilis is independent of membrane fatty acid composition. Boudreaux DP; Freese E J Bacteriol; 1981 Nov; 148(2):480-6. PubMed ID: 6795180 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of fatty acid profile and formation of biofilm in Geobacillus gargensis exposed to variable abiotic stress. Al-Beloshei NE; Al-Awadhi H; Al-Khalaf RA; Afzal M Can J Microbiol; 2015 Jan; 61(1):48-59. PubMed ID: 25496258 [TBL] [Abstract][Full Text] [Related]
17. [Microbial resistance to formaldehyde. III> Dependence of the microbial effect on Staphylococcus aureus, Enterococcus faecium and spores of Bacillus stearothermophilus on temperature]. Spicher G; Peters J Zentralbl Hyg Umweltmed; 1995 Mar; 196(6):545-61. PubMed ID: 7619203 [TBL] [Abstract][Full Text] [Related]
18. Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes. Nichols DS; Presser KA; Olley J; Ross T; McMeekin TA Appl Environ Microbiol; 2002 Jun; 68(6):2809-13. PubMed ID: 12039736 [TBL] [Abstract][Full Text] [Related]
19. Calcium uptake by Bacillus stearothermophilus: a requirement for thermophilic growth. Ståhl S; Ljunger C FEBS Lett; 1976 Mar; 63(1):184-7. PubMed ID: 1261679 [No Abstract] [Full Text] [Related]
20. Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. Chihib NE; Ribeiro da Silva M; Delattre G; Laroche M; Federighi M FEMS Microbiol Lett; 2003 Jan; 218(1):155-60. PubMed ID: 12583912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]