These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2369591)

  • 1. [Mechanism of the photodamage of eye structures. Changes in the lens crystalline charges after ultraviolet irradiation].
    El'chaninov VV; Fedorovich IB
    Biofizika; 1990; 35(2):200-4. PubMed ID: 2369591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanisms of photodestruction of the eye structure. Formation of polypeptide aggregates upon UV-irradiation of lens proteins].
    El'chaninov VV; Fedorovich IB
    Biofizika; 1989; 34(5):758-62. PubMed ID: 2611272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms of photodamage of eye structures. The effect of UV light on soluble lens proteins].
    Korkhmazian MM; Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1983; 28(6):966-71. PubMed ID: 6652135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The mechanism of photodamage of eye structures. IV. Changes in the reactivity of crystalline SH-groups during UV irradiation].
    El'chaninov VV; Fedorovich IB
    Biokhimiia; 1990 Jul; 55(7):1304-8. PubMed ID: 2223905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transglutaminase involvement in UV-A damage to the eye lens.
    Weinreb O; Dovrat A
    Exp Eye Res; 1996 Nov; 63(5):591-7. PubMed ID: 8994363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant beta-crystallins.
    Ostrovsky MA; Sergeev YV; Atkinson DB; Soustov LV; Hejtmancik JF
    Mol Vis; 2002 Mar; 8():72-8. PubMed ID: 11951082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on lens proteins. III. Variations in polypeptides of lens beta-crystallins.
    Mostafapour MK; Reddy VN
    Invest Ophthalmol Vis Sci; 1980 Sep; 19(9):1053-8. PubMed ID: 7409997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage.
    Mizdrak J; Hains PG; Truscott RJ; Jamie JF; Davies MJ
    Free Radic Biol Med; 2008 Mar; 44(6):1108-19. PubMed ID: 18206985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of UV-cutting filters on aggregation of lens protein.
    Iwata MA; Iwata S
    Jpn J Ophthalmol; 1985; 29(4):460-7. PubMed ID: 3831495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A structural study of crystallins in the normal and cataractous crystalline lens by x-ray diffraction].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Oftalmol Zh; 1989; (6):365-6. PubMed ID: 2622606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of near -UV irradiation on lens and aqueous humor proteins.
    Zigman S; Schultz JB; Yulo T; Grover D
    Isr J Med Sci; 1972; 8(8):1590-5. PubMed ID: 4647825
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of chronic near-ultraviolet radiation on the gray squirrel lens in vivo.
    Zigman S; Paxhia T; McDaniel T; Lou MF; Yu NT
    Invest Ophthalmol Vis Sci; 1991 May; 32(6):1723-32. PubMed ID: 2032795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study of influence of different damaging factors on lens. Report 3. Changes of lens protein composition].
    Kurova VS; Muranov KO; Polianskiĭ NB; Sheremet NL; Fedorov AA; Bannik KI; Polunin GS; Ostrovskiĭ MA
    Vestn Oftalmol; 2012; 128(1):17-9. PubMed ID: 22741289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV laser photodamage to whole lenses.
    Dillon J; Roy D; Spector A; Walker ML; Hibbard LB; Borkman RF
    Exp Eye Res; 1989 Dec; 49(6):959-66. PubMed ID: 2612589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein.
    Inoue A; Sasaki D; Satoh K
    Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-B-induced secondary conformational changes in lens alpha-crystallin.
    Lin SY; Ho CJ; Li MJ
    J Photochem Photobiol B; 1999 Mar; 49(1):29-34. PubMed ID: 10365444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morpho-physiological changes in ultra-violet irradiated crystalline lens--in vitro study.
    Jain NK; Rawal UM
    Indian J Ophthalmol; 1986; 34():145-7. PubMed ID: 3155052
    [No Abstract]   [Full Text] [Related]  

  • 18. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin.
    Weinreb O; van Boekel MA; Dovrat A; Bloemendal H
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):191-8. PubMed ID: 10634620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A 35-kDa polypeptide of the crystalline lens in the common frog: its biochemical properties, tissue specificity and appearance in the developmental process].
    Simirskiĭ VN; Aleĭnikova KS; Mikhaĭlov AT
    Ontogenez; 1990; 21(5):487-95. PubMed ID: 2280967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.